Timezone: »
We propose a novel distributed inference algorithm for continuous graphical models, by extending Stein variational gradient descent (SVGD) to leverage the Markov dependency structure of the distribution of interest. Our approach combines SVGD with a set of structured local kernel functions defined on the Markov blanket of each node, which alleviates the curse of high dimensionality and simultaneously yields a distributed algorithm for decentralized inference tasks. We justify our method with theoretical analysis and show that the use of local kernels can be viewed as a new type of localized approximation that matches the target distribution on the conditional distributions of each node over its Markov blanket. Our empirical results show that our method outperforms a variety of baselines including standard MCMC and particle message passing methods.
Author Information
Dilin Wang (UT Austin)
Zhe Zeng (Zhejiang University)
Qiang Liu (UT Austin)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Stein Variational Message Passing for Continuous Graphical Models »
Thu. Jul 12th 12:50 -- 01:00 PM Room A4
More from the Same Authors
-
2022 Poster: Centroid Approximation for Bootstrap: Improving Particle Quality at Inference »
Mao Ye · Qiang Liu -
2022 Poster: How to Fill the Optimum Set? Population Gradient Descent with Harmless Diversity »
Chengyue Gong · · Qiang Liu -
2022 Spotlight: How to Fill the Optimum Set? Population Gradient Descent with Harmless Diversity »
Chengyue Gong · · Qiang Liu -
2022 Spotlight: Centroid Approximation for Bootstrap: Improving Particle Quality at Inference »
Mao Ye · Qiang Liu -
2022 Poster: A Langevin-like Sampler for Discrete Distributions »
Ruqi Zhang · Xingchao Liu · Qiang Liu -
2022 Spotlight: A Langevin-like Sampler for Discrete Distributions »
Ruqi Zhang · Xingchao Liu · Qiang Liu -
2021 Poster: AlphaNet: Improved Training of Supernets with Alpha-Divergence »
Dilin Wang · Chengyue Gong · Meng Li · Qiang Liu · Vikas Chandra -
2021 Oral: AlphaNet: Improved Training of Supernets with Alpha-Divergence »
Dilin Wang · Chengyue Gong · Meng Li · Qiang Liu · Vikas Chandra -
2021 Poster: Coach-Player Multi-agent Reinforcement Learning for Dynamic Team Composition »
Bo Liu · Qiang Liu · Peter Stone · Animesh Garg · Yuke Zhu · Anima Anandkumar -
2021 Oral: Coach-Player Multi-agent Reinforcement Learning for Dynamic Team Composition »
Bo Liu · Qiang Liu · Peter Stone · Animesh Garg · Yuke Zhu · Anima Anandkumar -
2020 Poster: Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection »
Mao Ye · Chengyue Gong · Lizhen Nie · Denny Zhou · Adam Klivans · Qiang Liu -
2020 Poster: Go Wide, Then Narrow: Efficient Training of Deep Thin Networks »
Denny Zhou · Mao Ye · Chen Chen · Tianjian Meng · Mingxing Tan · Xiaodan Song · Quoc Le · Qiang Liu · Dale Schuurmans -
2020 Poster: Accountable Off-Policy Evaluation With Kernel Bellman Statistics »
Yihao Feng · Tongzheng Ren · Ziyang Tang · Qiang Liu -
2020 Poster: A Chance-Constrained Generative Framework for Sequence Optimization »
Xianggen Liu · Qiang Liu · Sen Song · Jian Peng -
2019 Workshop: Stein’s Method for Machine Learning and Statistics »
Francois-Xavier Briol · Lester Mackey · Chris Oates · Qiang Liu · Larry Goldstein · Larry Goldstein -
2019 Poster: Improving Neural Language Modeling via Adversarial Training »
Dilin Wang · Chengyue Gong · Qiang Liu -
2019 Oral: Improving Neural Language Modeling via Adversarial Training »
Dilin Wang · Chengyue Gong · Qiang Liu -
2019 Poster: Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization »
Chengyue Gong · Jian Peng · Qiang Liu -
2019 Poster: Nonlinear Stein Variational Gradient Descent for Learning Diversified Mixture Models »
Dilin Wang · Qiang Liu -
2019 Oral: Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization »
Chengyue Gong · Jian Peng · Qiang Liu -
2019 Oral: Nonlinear Stein Variational Gradient Descent for Learning Diversified Mixture Models »
Dilin Wang · Qiang Liu -
2018 Poster: Learning to Explore via Meta-Policy Gradient »
Tianbing Xu · Qiang Liu · Liang Zhao · Jian Peng -
2018 Poster: Stein Variational Gradient Descent Without Gradient »
Jun Han · Qiang Liu -
2018 Oral: Stein Variational Gradient Descent Without Gradient »
Jun Han · Qiang Liu -
2018 Oral: Learning to Explore via Meta-Policy Gradient »
Tianbing Xu · Qiang Liu · Liang Zhao · Jian Peng -
2018 Poster: Goodness-of-fit Testing for Discrete Distributions via Stein Discrepancy »
Jiasen Yang · Qiang Liu · Vinayak A Rao · Jennifer Neville -
2018 Oral: Goodness-of-fit Testing for Discrete Distributions via Stein Discrepancy »
Jiasen Yang · Qiang Liu · Vinayak A Rao · Jennifer Neville