Poster
Knowledge Transfer with Jacobian Matching
Suraj Srinivas · Francois Fleuret

Thu Jul 12th 06:15 -- 09:00 PM @ Hall B #204

Classical distillation methods transfer representations from a teacher'' neural network to astudent'' network by matching their output activations. Recent methods also match the Jacobians, or the gradient of output activations with the input. However, this involves making some ad hoc decisions, in particular, the choice of the loss function. In this paper, we first establish an equivalence between Jacobian matching and distillation with input noise, from which we derive appropriate loss functions for Jacobian matching. We then rely on this analysis to apply Jacobian matching to transfer learning by establishing equivalence of a recent transfer learning procedure to distillation. We then show experimentally on standard image datasets that Jacobian-based penalties improve distillation, robustness to noisy inputs, and transfer learning.

Author Information

Suraj Srinivas (Idiap)
Francois Fleuret (Idiap research institute)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors