Timezone: »
We propose a conditional gradient framework for a composite convex minimization template with broad applications. Our approach combines smoothing and homotopy techniques under the CGM framework, and provably achieves the optimal convergence rate. We demonstrate that the same rate holds if the linear subproblems are solved approximately with additive or multiplicative error. In contrast with the relevant work, we are able to characterize the convergence when the non-smooth term is an indicator function. Specific applications of our framework include the non-smooth minimization, semidefinite programming, and minimization with linear inclusion constraints over a compact domain. Numerical evidence demonstrates the benefits of our framework.
Author Information
Alp Yurtsever (EPFL)
Olivier Fercoq (Télécom Paris, IP Paris)
Francesco Locatello (ETH Zurich - Max Planck Institute)
Volkan Cevher (EPFL)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming »
Fri. Jul 13th 09:00 -- 09:20 AM Room A9
More from the Same Authors
-
2022 : Robustness in deep learning: The width (good), the depth (bad), and the initialization (ugly) »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 : Sound and Complete Verification of Polynomial Networks »
Elias Abad Rocamora · Mehmet Fatih Sahin · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2023 Poster: When do Minimax-fair Learning and Empirical Risk Minimization Coincide? »
Harvineet Singh · Matthäus Kleindessner · Volkan Cevher · Rumi Chunara · Chris Russell -
2023 Poster: Semi Bandit dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees. »
Ioannis Panageas · EFSTRATIOS PANTELEIMON SKOULAKIS · Luca Viano · Xiao Wang · Volkan Cevher -
2023 Poster: Benign Overfitting in Deep Neural Networks under Lazy Training »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Francesco Locatello · Volkan Cevher -
2023 Poster: What can online reinforcement learning with function approximation benefit from general coverage conditions? »
Fanghui Liu · Luca Viano · Volkan Cevher -
2023 Oral: Semi Bandit dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees. »
Ioannis Panageas · EFSTRATIOS PANTELEIMON SKOULAKIS · Luca Viano · Xiao Wang · Volkan Cevher -
2022 Poster: Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models »
Paul Rolland · Volkan Cevher · Matthäus Kleindessner · Chris Russell · Dominik Janzing · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Oral: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Oral: Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models »
Paul Rolland · Volkan Cevher · Matthäus Kleindessner · Chris Russell · Dominik Janzing · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: A Natural Actor-Critic Framework for Zero-Sum Markov Games »
Ahmet Alacaoglu · Luca Viano · Niao He · Volkan Cevher -
2022 Spotlight: A Natural Actor-Critic Framework for Zero-Sum Markov Games »
Ahmet Alacaoglu · Luca Viano · Niao He · Volkan Cevher -
2021 Poster: Neighborhood Contrastive Learning Applied to Online Patient Monitoring »
Hugo Yèche · Gideon Dresdner · Francesco Locatello · Matthias Hüser · Gunnar Rätsch -
2021 Spotlight: Neighborhood Contrastive Learning Applied to Online Patient Monitoring »
Hugo Yèche · Gideon Dresdner · Francesco Locatello · Matthias Hüser · Gunnar Rätsch -
2021 Poster: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Nadav Hallak · Panayotis Mertikopoulos · Volkan Cevher -
2021 Spotlight: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Nadav Hallak · Panayotis Mertikopoulos · Volkan Cevher -
2021 Oral: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2020 Poster: Efficient Proximal Mapping of the 1-path-norm of Shallow Networks »
Fabian Latorre · Paul Rolland · Shaul Nadav Hallak · Volkan Cevher -
2020 Poster: Conditional gradient methods for stochastically constrained convex minimization »
Maria-Luiza Vladarean · Ahmet Alacaoglu · Ya-Ping Hsieh · Volkan Cevher -
2020 Poster: Random extrapolation for primal-dual coordinate descent »
Ahmet Alacaoglu · Olivier Fercoq · Volkan Cevher -
2020 Poster: Double-Loop Unadjusted Langevin Algorithm »
Paul Rolland · Armin Eftekhari · Ali Kavis · Volkan Cevher -
2020 Poster: A new regret analysis for Adam-type algorithms »
Ahmet Alacaoglu · Yura Malitsky · Panayotis Mertikopoulos · Volkan Cevher -
2020 Poster: Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization »
Geoffrey Negiar · Gideon Dresdner · Alicia Yi-Ting Tsai · Laurent El Ghaoui · Francesco Locatello · Robert Freund · Fabian Pedregosa -
2020 Poster: Weakly-Supervised Disentanglement Without Compromises »
Francesco Locatello · Ben Poole · Gunnar Ratsch · Bernhard Schölkopf · Olivier Bachem · Michael Tschannen -
2019 Poster: Almost surely constrained convex optimization »
Olivier Fercoq · Ahmet Alacaoglu · Ion Necoara · Volkan Cevher -
2019 Poster: Finding Mixed Nash Equilibria of Generative Adversarial Networks »
Ya-Ping Hsieh · Chen Liu · Volkan Cevher -
2019 Poster: Efficient learning of smooth probability functions from Bernoulli tests with guarantees »
Paul Rolland · Ali Kavis · Alexander Niklaus Immer · Adish Singla · Volkan Cevher -
2019 Oral: Finding Mixed Nash Equilibria of Generative Adversarial Networks »
Ya-Ping Hsieh · Chen Liu · Volkan Cevher -
2019 Oral: Efficient learning of smooth probability functions from Bernoulli tests with guarantees »
Paul Rolland · Ali Kavis · Alexander Niklaus Immer · Adish Singla · Volkan Cevher -
2019 Oral: Almost surely constrained convex optimization »
Olivier Fercoq · Ahmet Alacaoglu · Ion Necoara · Volkan Cevher -
2019 Poster: Safe Grid Search with Optimal Complexity »
Eugene Ndiaye · Tam Le · Olivier Fercoq · Joseph Salmon · Ichiro Takeuchi -
2019 Poster: On Certifying Non-Uniform Bounds against Adversarial Attacks »
Chen Liu · Ryota Tomioka · Volkan Cevher -
2019 Poster: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem -
2019 Poster: Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator »
Alp Yurtsever · Suvrit Sra · Volkan Cevher -
2019 Poster: A Conditional-Gradient-Based Augmented Lagrangian Framework »
Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Oral: Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator »
Alp Yurtsever · Suvrit Sra · Volkan Cevher -
2019 Oral: Safe Grid Search with Optimal Complexity »
Eugene Ndiaye · Tam Le · Olivier Fercoq · Joseph Salmon · Ichiro Takeuchi -
2019 Oral: A Conditional-Gradient-Based Augmented Lagrangian Framework »
Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Oral: On Certifying Non-Uniform Bounds against Adversarial Attacks »
Chen Liu · Ryota Tomioka · Volkan Cevher -
2019 Oral: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem -
2018 Poster: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Oral: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Poster: Let’s be Honest: An Optimal No-Regret Framework for Zero-Sum Games »
Ehsan Asadi Kangarshahi · Ya-Ping Hsieh · Mehmet Fatih Sahin · Volkan Cevher -
2018 Poster: Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods »
Junhong Lin · Volkan Cevher -
2018 Oral: Let’s be Honest: An Optimal No-Regret Framework for Zero-Sum Games »
Ehsan Asadi Kangarshahi · Ya-Ping Hsieh · Mehmet Fatih Sahin · Volkan Cevher -
2018 Oral: Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods »
Junhong Lin · Volkan Cevher -
2018 Poster: Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces »
Junhong Lin · Volkan Cevher -
2018 Oral: Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces »
Junhong Lin · Volkan Cevher -
2017 Poster: Robust Submodular Maximization: A Non-Uniform Partitioning Approach »
Ilija Bogunovic · Slobodan Mitrovic · Jonathan Scarlett · Volkan Cevher -
2017 Talk: Robust Submodular Maximization: A Non-Uniform Partitioning Approach »
Ilija Bogunovic · Slobodan Mitrovic · Jonathan Scarlett · Volkan Cevher