Timezone: »

 
Poster
Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang

Thu Jul 12 09:15 AM -- 12:00 PM (PDT) @ Hall B #14

Large-scale distributed optimization is of great importance in various applications. For data-parallel based distributed learning, the inter-node gradient communication often becomes the performance bottleneck. In this paper, we propose the error compensated quantized stochastic gradient descent algorithm to improve the training efficiency. Local gradients are quantized to reduce the communication overhead, and accumulated quantization error is utilized to speed up the convergence. Furthermore, we present theoretical analysis on the convergence behaviour, and demonstrate its advantage over competitors. Extensive experiments indicate that our algorithm can compress gradients by a factor of up to two magnitudes without performance degradation.

Author Information

Jiaxiang Wu (Tencent AI Lab)
Weidong Huang (Tencent)
Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
Tong Zhang (Tecent AI Lab)
Tong Zhang

Tong Zhang is a professor of Computer Science and Mathematics at the Hong Kong University of Science and Technology. His research interests are machine learning, big data and their applications. He obtained a BA in Mathematics and Computer Science from Cornell University, and a PhD in Computer Science from Stanford University. Before joining HKUST, Tong Zhang was a professor at Rutgers University, and worked previously at IBM, Yahoo as research scientists, Baidu as the director of Big Data Lab, and Tencent as the founding director of AI Lab. Tong Zhang was an ASA fellow and IMS fellow, and has served as the chair or area-chair in major machine learning conferences such as NIPS, ICML, and COLT, and has served as associate editors in top machine learning journals such as PAMI, JMLR, and Machine Learning Journal.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors