Poster
Configurable Markov Decision Processes
Alberto Maria Metelli · Mirco Mutti · Marcello Restelli

Thu Jul 12th 06:15 -- 09:00 PM @ Hall B #88

In many real-world problems, there is the possibility to configure, to a limited extent, some environmental parameters to improve the performance of a learning agent. In this paper, we propose a novel framework, Configurable Markov Decision Processes (Conf-MDPs), to model this new type of interaction with the environment. Furthermore, we provide a new learning algorithm, Safe Policy-Model Iteration (SPMI), to jointly and adaptively optimize the policy and the environment configuration. After having introduced our approach and derived some theoretical results, we present the experimental evaluation in two explicative problems to show the benefits of the environment configurability on the performance of the learned policy.

Author Information

Alberto Maria Metelli (Politecnico di Milano)
Mirco Mutti (Politecnico di Milano)
Marcello Restelli (Politecnico di Milano)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors