Timezone: »

SQL-Rank: A Listwise Approach to Collaborative Ranking
LIWEI WU · Cho-Jui Hsieh · University of California James Sharpnack

Thu Jul 12 09:15 AM -- 12:00 PM (PDT) @ Hall B #51

In this paper, we propose a listwise approach for constructing user-specific rankings in recommendation systems in a collaborative fashion. We contrast the listwise approach to previous pointwise and pairwise approaches, which are based on treating either each rating or each pairwise comparison as an independent instance respectively. By extending the work of ListNet (Cao et al., 2007), we cast listwise collaborative ranking as maximum likelihood under a permutation model which applies probability mass to permutations based on a low rank latent score matrix. We present a novel algorithm called SQL-Rank, which can accommodate ties and missing data and can run in linear time. We develop a theoretical framework for analyzing listwise ranking methods based on a novel representation theory for the permutation model. Applying this framework to collaborative ranking, we derive asymptotic statistical rates as the number of users and items grow together. We conclude by demonstrating that our SQL-Rank method often outperforms current state-of-the-art algorithms for implicit feedback such as Weighted-MF and BPR and achieve favorable results when compared to explicit feedback algorithms such as matrix factorization and collaborative ranking.

Author Information

LIWEI WU (University of California, Davis)
Cho-Jui Hsieh (University of California, Davis)
University of California James Sharpnack (University of California, Davis)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors