Timezone: »
Direct policy gradient methods for reinforcement learning and continuous control problems are a popular approach for a variety of reasons: 1) they are easy to implement without explicit knowledge of the underlying model, 2) they are an ``end-to-end'' approach, directly optimizing the performance metric of interest, 3) they inherently allow for richly parameterized policies. A notable drawback is that even in the most basic continuous control problem (that of linear quadratic regulators), these methods must solve a non-convex optimization problem, where little is understood about their efficiency from both computational and statistical perspectives. In contrast, system identification and model based planning in optimal control theory have a much more solid theoretical footing, where much is known with regards to their computational and statistical properties. This work bridges this gap showing that (model free) policy gradient methods globally converge to the optimal solution and are efficient (polynomially so in relevant problem dependent quantities) with regards to their sample and computational complexities.
Author Information
Maryam Fazel (University of Washington)
Rong Ge (Duke University)
Sham Kakade (University of Washington)
Sham Kakade is a Gordon McKay Professor of Computer Science and Statistics at Harvard University and a co-director of the recently announced Kempner Institute. He works on the mathematical foundations of machine learning and AI. Sham's thesis helped in laying the statistical foundations of reinforcement learning. With his collaborators, his additional contributions include: one of the first provably efficient policy search methods, Conservative Policy Iteration, for reinforcement learning; developing the mathematical foundations for the widely used linear bandit models and the Gaussian process bandit models; the tensor and spectral methodologies for provable estimation of latent variable models; the first sharp analysis of the perturbed gradient descent algorithm, along with the design and analysis of numerous other convex and non-convex algorithms. He is the recipient of the ICML Test of Time Award (2020), the IBM Pat Goldberg best paper award (in 2007), INFORMS Revenue Management and Pricing Prize (2014). He has been program chair for COLT 2011. Sham was an undergraduate at Caltech, where he studied physics and worked under the guidance of John Preskill in quantum computing. He then completed his Ph.D. in computational neuroscience at the Gatsby Unit at University College London, under the supervision of Peter Dayan. He was a postdoc at the Dept. of Computer Science, University of Pennsylvania , where he broadened his studies to include computational game theory and economics from the guidance of Michael Kearns. Sham has been a Principal Research Scientist at Microsoft Research, New England, an associate professor at the Department of Statistics, Wharton, UPenn, and an assistant professor at the Toyota Technological Institute at Chicago.
Mehran Mesbahi
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator »
Fri. Jul 13th 02:00 -- 02:20 PM Room A1
More from the Same Authors
-
2021 : Improved Regret Bounds for Online Submodular Maximization »
Omid Sadeghi · Maryam Fazel -
2021 : Differentially Private Monotone Submodular Maximization Under Matroid and Knapsack Constraints »
Omid Sadeghi · Maryam Fazel -
2021 : A Short Note on the Relationship of Information Gain and Eluder Dimension »
Kaixuan Huang · Sham Kakade · Jason Lee · Qi Lei -
2021 : Sparsity in the Partially Controllable LQR »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2023 : The Role of Linguistic Priors in Measuring Compositional Generalization of Vision-language Models »
Chenwei Wu · Li Li · Stefano Ermon · Patrick Haffner · Rong Ge · Zaiwei Zhang -
2023 Poster: Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression »
Mo Zhou · Rong Ge -
2023 Poster: Hiding Data Helps: On the Benefits of Masking for Sparse Coding »
Muthu Chidambaram · Chenwei Wu · Yu Cheng · Rong Ge -
2023 Poster: Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup »
Muthu Chidambaram · Xiang Wang · Chenwei Wu · Rong Ge -
2022 Poster: Online Algorithms with Multiple Predictions »
Keerti Anand · Rong Ge · Amit Kumar · Debmalya Panigrahi -
2022 Spotlight: Online Algorithms with Multiple Predictions »
Keerti Anand · Rong Ge · Amit Kumar · Debmalya Panigrahi -
2022 Poster: Extracting Latent State Representations with Linear Dynamics from Rich Observations »
Abraham Frandsen · Rong Ge · Holden Lee -
2022 Spotlight: Extracting Latent State Representations with Linear Dynamics from Rich Observations »
Abraham Frandsen · Rong Ge · Holden Lee -
2021 : Differentially Private Monotone Submodular Maximization Under Matroid and Knapsack Constraints »
Maryam Fazel · Omid Sadeghi -
2021 : Improved Regret Bounds for Online Submodular Maximization »
Maryam Fazel · Omid Sadeghi -
2021 : Sparsity in the Partially Controllable LQR »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2021 Poster: How Important is the Train-Validation Split in Meta-Learning? »
Yu Bai · Minshuo Chen · Pan Zhou · Tuo Zhao · Jason Lee · Sham Kakade · Huan Wang · Caiming Xiong -
2021 Spotlight: How Important is the Train-Validation Split in Meta-Learning? »
Yu Bai · Minshuo Chen · Pan Zhou · Tuo Zhao · Jason Lee · Sham Kakade · Huan Wang · Caiming Xiong -
2021 Poster: Guarantees for Tuning the Step Size using a Learning-to-Learn Approach »
Xiang Wang · Shuai Yuan · Chenwei Wu · Rong Ge -
2021 Poster: Bilinear Classes: A Structural Framework for Provable Generalization in RL »
Simon Du · Sham Kakade · Jason Lee · Shachar Lovett · Gaurav Mahajan · Wen Sun · Ruosong Wang -
2021 Poster: Instabilities of Offline RL with Pre-Trained Neural Representation »
Ruosong Wang · Yifan Wu · Ruslan Salakhutdinov · Sham Kakade -
2021 Spotlight: Guarantees for Tuning the Step Size using a Learning-to-Learn Approach »
Xiang Wang · Shuai Yuan · Chenwei Wu · Rong Ge -
2021 Spotlight: Instabilities of Offline RL with Pre-Trained Neural Representation »
Ruosong Wang · Yifan Wu · Ruslan Salakhutdinov · Sham Kakade -
2021 Oral: Bilinear Classes: A Structural Framework for Provable Generalization in RL »
Simon Du · Sham Kakade · Jason Lee · Shachar Lovett · Gaurav Mahajan · Wen Sun · Ruosong Wang -
2020 : QA for invited talk 8 Kakade »
Sham Kakade -
2020 : Invited talk 8 Kakade »
Sham Kakade -
2020 : Speaker Panel »
Csaba Szepesvari · Martha White · Sham Kakade · Gergely Neu · Shipra Agrawal · Akshay Krishnamurthy -
2020 : Exploration, Policy Gradient Methods, and the Deadly Triad - Sham Kakade »
Sham Kakade -
2020 Poster: Soft Threshold Weight Reparameterization for Learnable Sparsity »
Aditya Kusupati · Vivek Ramanujan · Raghav Somani · Mitchell Wortsman · Prateek Jain · Sham Kakade · Ali Farhadi -
2020 Poster: High-dimensional Robust Mean Estimation via Gradient Descent »
Yu Cheng · Ilias Diakonikolas · Rong Ge · Mahdi Soltanolkotabi -
2020 Poster: Calibration, Entropy Rates, and Memory in Language Models »
Mark Braverman · Xinyi Chen · Sham Kakade · Karthik Narasimhan · Cyril Zhang · Yi Zhang -
2020 Poster: The Implicit and Explicit Regularization Effects of Dropout »
Colin Wei · Sham Kakade · Tengyu Ma -
2020 Poster: Provable Representation Learning for Imitation Learning via Bi-level Optimization »
Sanjeev Arora · Simon Du · Sham Kakade · Yuping Luo · Nikunj Umesh Saunshi -
2020 Poster: Meta-learning for Mixed Linear Regression »
Weihao Kong · Raghav Somani · Zhao Song · Sham Kakade · Sewoong Oh -
2020 Poster: Customizing ML Predictions for Online Algorithms »
Keerti Anand · Rong Ge · Debmalya Panigrahi -
2020 Test Of Time: Test of Time: Gaussian Process Optimization in the Bandit Settings: No Regret and Experimental Design »
Niranjan Srinivas · Andreas Krause · Sham Kakade · Matthias Seeger -
2019 : Keynote by Sham Kakade: Prediction, Learning, and Memory »
Sham Kakade -
2019 Poster: Online Control with Adversarial Disturbances »
Naman Agarwal · Brian Bullins · Elad Hazan · Sham Kakade · Karan Singh -
2019 Oral: Online Control with Adversarial Disturbances »
Naman Agarwal · Brian Bullins · Elad Hazan · Sham Kakade · Karan Singh -
2019 Poster: Provably Efficient Maximum Entropy Exploration »
Elad Hazan · Sham Kakade · Karan Singh · Abby Van Soest -
2019 Oral: Provably Efficient Maximum Entropy Exploration »
Elad Hazan · Sham Kakade · Karan Singh · Abby Van Soest -
2019 Poster: Online Meta-Learning »
Chelsea Finn · Aravind Rajeswaran · Sham Kakade · Sergey Levine -
2019 Poster: Maximum Likelihood Estimation for Learning Populations of Parameters »
Ramya Korlakai Vinayak · Weihao Kong · Gregory Valiant · Sham Kakade -
2019 Oral: Maximum Likelihood Estimation for Learning Populations of Parameters »
Ramya Korlakai Vinayak · Weihao Kong · Gregory Valiant · Sham Kakade -
2019 Oral: Online Meta-Learning »
Chelsea Finn · Aravind Rajeswaran · Sham Kakade · Sergey Levine -
2018 Poster: Stronger Generalization Bounds for Deep Nets via a Compression Approach »
Sanjeev Arora · Rong Ge · Behnam Neyshabur · Yi Zhang -
2018 Oral: Stronger Generalization Bounds for Deep Nets via a Compression Approach »
Sanjeev Arora · Rong Ge · Behnam Neyshabur · Yi Zhang -
2017 Workshop: Principled Approaches to Deep Learning »
Andrzej Pronobis · Robert Gens · Sham Kakade · Pedro Domingos -
2017 Poster: How to Escape Saddle Points Efficiently »
Chi Jin · Rong Ge · Praneeth Netrapalli · Sham Kakade · Michael Jordan -
2017 Talk: How to Escape Saddle Points Efficiently »
Chi Jin · Rong Ge · Praneeth Netrapalli · Sham Kakade · Michael Jordan -
2017 Poster: No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis »
Rong Ge · Chi Jin · Yi Zheng -
2017 Poster: Generalization and Equilibrium in Generative Adversarial Nets (GANs) »
Sanjeev Arora · Rong Ge · Yingyu Liang · Tengyu Ma · Yi Zhang -
2017 Talk: No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis »
Rong Ge · Chi Jin · Yi Zheng -
2017 Talk: Generalization and Equilibrium in Generative Adversarial Nets (GANs) »
Sanjeev Arora · Rong Ge · Yingyu Liang · Tengyu Ma · Yi Zhang