Timezone: »
One of the most compelling features of Gaussian process (GP) regression is its ability to provide well-calibrated posterior distributions. Recent advances in inducing point methods have sped up GP marginal likelihood and posterior mean computations, leaving posterior covariance estimation and sampling as the remaining computational bottlenecks. In this paper we address these shortcomings by using the Lanczos algorithm to rapidly approximate the predictive covariance matrix. Our approach, which we refer to as LOVE (LanczOs Variance Estimates), substantially improves time and space complexity. In our experiments, LOVE computes covariances up to 2,000 times faster and draws samples 18,000 times faster than existing methods, all without sacrificing accuracy.
Author Information
Geoff Pleiss (Cornell University)
Jake Gardner (Uber AI Labs)
Kilian Weinberger (Cornell University)
Kilian Weinberger is an Associate Professor in the Department of Computer Science at Cornell University. He received his Ph.D. from the University of Pennsylvania in Machine Learning under the supervision of Lawrence Saul and his undergraduate degree in Mathematics and Computer Science from the University of Oxford. During his career he has won several best paper awards at ICML, CVPR, AISTATS and KDD (runner-up award). In 2011 he was awarded the Outstanding AAAI Senior Program Chair Award and in 2012 he received an NSF CAREER award. He was elected co-Program Chair for ICML 2016 and for AAAI 2018. Kilian Weinberger's research focuses on Machine Learning and its applications. In particular, he focuses on learning under resource constraints, metric learning, machine learned web-search ranking, computer vision and deep learning. Before joining Cornell University, he was an Associate Professor at Washington University in St. Louis and before that he worked as a research scientist at Yahoo! Research in Santa Clara.
Andrew Wilson (Cornell University)

Andrew Gordon Wilson is faculty in the Courant Institute and Center for Data Science at NYU. His interests include probabilistic modelling, Gaussian processes, Bayesian statistics, physics inspired machine learning, and loss surfaces and generalization in deep learning. His webpage is https://cims.nyu.edu/~andrewgw.
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Constant-Time Predictive Distributions for Gaussian Processes »
Fri Jul 13th 09:40 -- 09:50 AM Room A4
More from the Same Authors
-
2020 Poster: Semi-Supervised Learning with Normalizing Flows »
Pavel Izmailov · Polina Kirichenko · Marc Finzi · Andrew Wilson -
2020 Poster: Randomly Projected Additive Gaussian Processes for Regression »
Ian Delbridge · David S Bindel · Andrew Wilson -
2020 Poster: Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data »
Marc Finzi · Samuel Stanton · Pavel Izmailov · Andrew Wilson -
2020 Poster: Parametric Gaussian Process Regressors »
Martin Jankowiak · Geoff Pleiss · Jacob Gardner -
2020 Tutorial: Bayesian Deep Learning and a Probabilistic Perspective of Model Construction »
Andrew Wilson -
2019 Poster: Simple Black-box Adversarial Attacks »
Chuan Guo · Jacob Gardner · Yurong You · Andrew Wilson · Kilian Weinberger -
2019 Oral: Simple Black-box Adversarial Attacks »
Chuan Guo · Jacob Gardner · Yurong You · Andrew Wilson · Kilian Weinberger -
2019 Poster: SWALP : Stochastic Weight Averaging in Low Precision Training »
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa -
2019 Poster: Simplifying Graph Convolutional Networks »
Felix Wu · Amauri Souza · Tianyi Zhang · Christopher Fifty · Tao Yu · Kilian Weinberger -
2019 Oral: SWALP : Stochastic Weight Averaging in Low Precision Training »
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa -
2019 Oral: Simplifying Graph Convolutional Networks »
Felix Wu · Amauri Souza · Tianyi Zhang · Christopher Fifty · Tao Yu · Kilian Weinberger -
2017 Poster: On Calibration of Modern Neural Networks »
Chuan Guo · Geoff Pleiss · Yu Sun · Kilian Weinberger -
2017 Talk: On Calibration of Modern Neural Networks »
Chuan Guo · Geoff Pleiss · Yu Sun · Kilian Weinberger