Timezone: »
Poster
Noise2Noise: Learning Image Restoration without Clean Data
Jaakko Lehtinen · Jacob Munkberg · Jon Hasselgren · Samuli Laine · Tero Karras · Miika Aittala · Timo Aila
We apply basic statistical reasoning to signal reconstruction by machine learning - learning to map corrupted observations to clean signals - with a simple and powerful conclusion: it is possible to learn to restore images by only looking at corrupted examples, at performance at and sometimes exceeding training using clean data, without explicit image priors or likelihood models of the corruption. In practice, we show that a single model learns photographic noise removal, denoising synthetic Monte Carlo images, and reconstruction of undersampled MRI scans - all corrupted by different processes - based on noisy data only.
Author Information
Jaakko Lehtinen (Aalto University & NVIDIA)
Jacob Munkberg (NVIDIA)
Jon Hasselgren (NVIDIA)
Samuli Laine (NVIDIA Research)
Tero Karras (NVIDIA)
Miika Aittala (MIT)
Timo Aila (NVIDIA)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Noise2Noise: Learning Image Restoration without Clean Data »
Thu. Jul 12th 12:20 -- 12:30 PM Room A6
More from the Same Authors
-
2023 Poster: StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis »
Axel Sauer · Axel Sauer · Tero Karras · Samuli Laine · Andreas Geiger · Timo Aila -
2023 Oral: StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis »
Axel Sauer · Axel Sauer · Tero Karras · Samuli Laine · Andreas Geiger · Timo Aila -
2020 Poster: Semi-Supervised StyleGAN for Disentanglement Learning »
Weili Nie · Tero Karras · Animesh Garg · Shoubhik Debnath · Anjul Patney · Ankit Patel · Anima Anandkumar