Timezone: »
In this paper, we revisit the recurrent back-propagation (RBP) algorithm, discuss the conditions under which it applies as well as how to satisfy them in deep neural networks. We show that RBP can be unstable and propose two variants based on conjugate gradient on the normal equations (CG-RBP) and Neumann series (Neumann-RBP). We further investigate the relationship between Neumann-RBP and back propagation through time (BPTT) and its truncated version (TBPTT). Our Neumann-RBP has the same time complexity as TBPTT but only requires constant memory, whereas TBPTT's memory cost scales linearly with the number of truncation steps. We examine all RBP variants along with BPTT and TBPTT in three different application domains: associative memory with continuous Hopfield networks, document classification in citation networks using graph neural networks and hyperparameter optimization for fully connected networks. All experiments demonstrate that RBPs, especially the Neumann-RBP variant, are efficient and effective for optimizing convergent recurrent neural networks.
Author Information
Renjie Liao (University of Toronto)
Yuwen Xiong (Uber ATG / University of Toronto)
Ethan Fetaya (University of Toronto)
Lisa Zhang (University of Toronto)
Kijung Yoon (Rice University)
Zachary S Pitkow (Baylor College of Medicine / Rice University)
Raquel Urtasun (University of Toronto)
Richard Zemel (Vector Institute)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Reviving and Improving Recurrent Back-Propagation »
Thu. Jul 12th 02:00 -- 02:20 PM Room K1
More from the Same Authors
-
2021 : Online Algorithmic Recourse by Collective Action »
Elliot Creager · Richard Zemel -
2022 : Towards Environment-Invariant Representation Learning for Robust Task Transfer »
Benjamin Eyre · Richard Zemel · Elliot Creager -
2023 : Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift »
Benjamin Eyre · Elliot Creager · David Madras · Vardan Papyan · Richard Zemel -
2023 Test Of Time: Learning Fair Representations »
Richard Zemel · Yu Wu · Kevin Swersky · Toniann Pitassi · Cynthia Dwork -
2022 : Invited talks 3, Q/A, Amy, Rich and Liting »
Liting Sun · Amy Zhang · Richard Zemel -
2022 : Invited talks 3, Amy Zhang, Rich Zemel and Liting Sun »
Amy Zhang · Richard Zemel · Liting Sun -
2021 Workshop: Workshop on Socially Responsible Machine Learning »
Chaowei Xiao · Animashree Anandkumar · Mingyan Liu · Dawn Song · Raquel Urtasun · Jieyu Zhao · Xueru Zhang · Cihang Xie · Xinyun Chen · Bo Li -
2021 Poster: SketchEmbedNet: Learning Novel Concepts by Imitating Drawings »
Alexander Wang · Mengye Ren · Richard Zemel -
2021 Poster: Learning a Universal Template for Few-shot Dataset Generalization »
Eleni Triantafillou · Hugo Larochelle · Richard Zemel · Vincent Dumoulin -
2021 Poster: Environment Inference for Invariant Learning »
Elliot Creager · Joern-Henrik Jacobsen · Richard Zemel -
2021 Spotlight: Learning a Universal Template for Few-shot Dataset Generalization »
Eleni Triantafillou · Hugo Larochelle · Richard Zemel · Vincent Dumoulin -
2021 Spotlight: Environment Inference for Invariant Learning »
Elliot Creager · Joern-Henrik Jacobsen · Richard Zemel -
2021 Spotlight: SketchEmbedNet: Learning Novel Concepts by Imitating Drawings »
Alexander Wang · Mengye Ren · Richard Zemel -
2021 Poster: On Monotonic Linear Interpolation of Neural Network Parameters »
James Lucas · Juhan Bae · Michael Zhang · Stanislav Fort · Richard Zemel · Roger Grosse -
2021 Spotlight: On Monotonic Linear Interpolation of Neural Network Parameters »
James Lucas · Juhan Bae · Michael Zhang · Stanislav Fort · Richard Zemel · Roger Grosse -
2020 : Invited Talk 4: Prof. Richard Zemel from University of Toronto »
Richard Zemel -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 : Keynote #4 Raquel Urtasun »
Raquel Urtasun -
2020 Workshop: Participatory Approaches to Machine Learning »
Angela Zhou · David Madras · Deborah Raji · Smitha Milli · Bogdan Kulynych · Richard Zemel -
2020 Poster: Latent Variable Modelling with Hyperbolic Normalizing Flows »
Joey Bose · Ariella Smofsky · Renjie Liao · Prakash Panangaden · Will Hamilton -
2020 Poster: Causal Modeling for Fairness In Dynamical Systems »
Elliot Creager · David Madras · Toniann Pitassi · Richard Zemel -
2020 Poster: Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach »
Martin Mladenov · Elliot Creager · Omer Ben-Porat · Kevin Swersky · Richard Zemel · Craig Boutilier -
2020 Poster: Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling »
Will Grathwohl · Kuan-Chieh Wang · Joern-Henrik Jacobsen · David Duvenaud · Richard Zemel -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 Poster: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Poster: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Oral: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Oral: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Poster: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2019 Oral: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2019 Poster: On the Universality of Invariant Networks »
Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman -
2019 Oral: On the Universality of Invariant Networks »
Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman -
2018 Poster: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Oral: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Poster: Learning to Reweight Examples for Robust Deep Learning »
Mengye Ren · Wenyuan Zeng · Bin Yang · Raquel Urtasun -
2018 Poster: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Learning to Reweight Examples for Robust Deep Learning »
Mengye Ren · Wenyuan Zeng · Bin Yang · Raquel Urtasun -
2018 Poster: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2018 Oral: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2017 Workshop: ICML Workshop on Machine Learning for Autonomous Vehicles 2017 »
Li Erran Li · Raquel Urtasun · Andrew Gray · Silvio Savarese -
2017 Poster: Deep Spectral Clustering Learning »
Marc Law · Raquel Urtasun · Richard Zemel -
2017 Talk: Deep Spectral Clustering Learning »
Marc Law · Raquel Urtasun · Richard Zemel -
2017 Tutorial: Machine Learning for Autonomous Vehicles »
Raquel Urtasun · Andrew Gray · Carl Wellington