Timezone: »
We revisit the problem of solving two-player zero-sum games in the decentralized setting. We propose a simple algorithmic framework that simultaneously achieves the best rates for honest regret as well as adversarial regret, and in addition resolves the open problem of removing the logarithmic terms in convergence to the value of the game. We achieve this goal in three steps. First, we provide a novel analysis of the optimistic mirror descent (OMD), showing that it can be modified to guarantee fast convergence for both honest regret and value of the game, when the players are playing collaboratively. Second, we propose a new algorithm, dubbed as robust optimistic mirror descent (ROMD), which attains optimal adversarial regret without knowing the time horizon beforehand. Finally, we propose a simple signaling scheme, which enables us to bridge OMD and ROMD to achieve the best of both worlds. Numerical examples are presented to support our theoretical claims and show that our non-adaptive ROMD algorithm can be competitive to OMD with adaptive step-size selection.
Author Information
Ehsan Asadi Kangarshahi (University of Cambridge)
I received my bachelors in electrical engineering and pure mathematics simultaneously from Sharif University of Technology, Iran in 2017. From October 2017 until January 2018 I was an intern in LIONS, EPFL. In January 2018 I joined Information Engineering Department, the University of Cambridge as a Ph.D. student.
Ya-Ping Hsieh (École Polytechnique Fédérale d)
Mehmet Fatih Sahin (Ecole Polytechnique Fédérale de Lausanne)
Volkan Cevher (EPFL)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Let’s be Honest: An Optimal No-Regret Framework for Zero-Sum Games »
Thu. Jul 12th 03:00 -- 03:20 PM Room A5
More from the Same Authors
-
2022 : Robustness in deep learning: The width (good), the depth (bad), and the initialization (ugly) »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 : Sound and Complete Verification of Polynomial Networks »
Elias Abad Rocamora · Mehmet Fatih Sahin · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2023 : Adversarial Training Should Be Cast as a Non-Zero-Sum Game »
Alex Robey · Fabian Latorre · George J. Pappas · Hamed Hassani · Volkan Cevher -
2023 Oral: Semi Bandit dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees. »
Ioannis Panageas · EFSTRATIOS PANTELEIMON SKOULAKIS · Luca Viano · Xiao Wang · Volkan Cevher -
2023 Poster: When do Minimax-fair Learning and Empirical Risk Minimization Coincide? »
Harvineet Singh · Matthäus Kleindessner · Volkan Cevher · Rumi Chunara · Chris Russell -
2023 Poster: Benign Overfitting in Deep Neural Networks under Lazy Training »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Francesco Locatello · Volkan Cevher -
2023 Poster: What can online reinforcement learning with function approximation benefit from general coverage conditions? »
Fanghui Liu · Luca Viano · Volkan Cevher -
2023 Poster: Semi Bandit dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees. »
Ioannis Panageas · EFSTRATIOS PANTELEIMON SKOULAKIS · Luca Viano · Xiao Wang · Volkan Cevher -
2023 : 1-Path-Norm Regularization of Deep Neural Networks »
Fabian Latorre · Antoine Bonnet · Paul Rolland · Nadav Hallak · Volkan Cevher -
2023 : 1-Path-Norm Regularization of Deep Neural Networks »
Fabian Latorre · Antoine Bonnet · Paul Rolland · Nadav Hallak · Volkan Cevher -
2022 Poster: Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models »
Paul Rolland · Volkan Cevher · Matthäus Kleindessner · Chris Russell · Dominik Janzing · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Oral: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Oral: Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models »
Paul Rolland · Volkan Cevher · Matthäus Kleindessner · Chris Russell · Dominik Janzing · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: A Natural Actor-Critic Framework for Zero-Sum Markov Games »
Ahmet Alacaoglu · Luca Viano · Niao He · Volkan Cevher -
2022 Spotlight: A Natural Actor-Critic Framework for Zero-Sum Markov Games »
Ahmet Alacaoglu · Luca Viano · Niao He · Volkan Cevher -
2021 Poster: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Nadav Hallak · Panayotis Mertikopoulos · Volkan Cevher -
2021 Spotlight: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Nadav Hallak · Panayotis Mertikopoulos · Volkan Cevher -
2021 Oral: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2020 Poster: Efficient Proximal Mapping of the 1-path-norm of Shallow Networks »
Fabian Latorre · Paul Rolland · Shaul Nadav Hallak · Volkan Cevher -
2020 Poster: Conditional gradient methods for stochastically constrained convex minimization »
Maria-Luiza Vladarean · Ahmet Alacaoglu · Ya-Ping Hsieh · Volkan Cevher -
2020 Poster: Random extrapolation for primal-dual coordinate descent »
Ahmet Alacaoglu · Olivier Fercoq · Volkan Cevher -
2020 Poster: Double-Loop Unadjusted Langevin Algorithm »
Paul Rolland · Armin Eftekhari · Ali Kavis · Volkan Cevher -
2020 Poster: A new regret analysis for Adam-type algorithms »
Ahmet Alacaoglu · Yura Malitsky · Panayotis Mertikopoulos · Volkan Cevher -
2019 Poster: Almost surely constrained convex optimization »
Olivier Fercoq · Ahmet Alacaoglu · Ion Necoara · Volkan Cevher -
2019 Poster: Finding Mixed Nash Equilibria of Generative Adversarial Networks »
Ya-Ping Hsieh · Chen Liu · Volkan Cevher -
2019 Poster: Efficient learning of smooth probability functions from Bernoulli tests with guarantees »
Paul Rolland · Ali Kavis · Alexander Niklaus Immer · Adish Singla · Volkan Cevher -
2019 Oral: Finding Mixed Nash Equilibria of Generative Adversarial Networks »
Ya-Ping Hsieh · Chen Liu · Volkan Cevher -
2019 Oral: Efficient learning of smooth probability functions from Bernoulli tests with guarantees »
Paul Rolland · Ali Kavis · Alexander Niklaus Immer · Adish Singla · Volkan Cevher -
2019 Oral: Almost surely constrained convex optimization »
Olivier Fercoq · Ahmet Alacaoglu · Ion Necoara · Volkan Cevher -
2019 Poster: On Certifying Non-Uniform Bounds against Adversarial Attacks »
Chen Liu · Ryota Tomioka · Volkan Cevher -
2019 Poster: Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator »
Alp Yurtsever · Suvrit Sra · Volkan Cevher -
2019 Poster: A Conditional-Gradient-Based Augmented Lagrangian Framework »
Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Oral: Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator »
Alp Yurtsever · Suvrit Sra · Volkan Cevher -
2019 Oral: A Conditional-Gradient-Based Augmented Lagrangian Framework »
Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Oral: On Certifying Non-Uniform Bounds against Adversarial Attacks »
Chen Liu · Ryota Tomioka · Volkan Cevher -
2018 Poster: A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming »
Alp Yurtsever · Olivier Fercoq · Francesco Locatello · Volkan Cevher -
2018 Oral: A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming »
Alp Yurtsever · Olivier Fercoq · Francesco Locatello · Volkan Cevher -
2018 Poster: Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods »
Junhong Lin · Volkan Cevher -
2018 Oral: Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods »
Junhong Lin · Volkan Cevher -
2018 Poster: Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces »
Junhong Lin · Volkan Cevher -
2018 Oral: Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces »
Junhong Lin · Volkan Cevher -
2017 Poster: Robust Submodular Maximization: A Non-Uniform Partitioning Approach »
Ilija Bogunovic · Slobodan Mitrovic · Jonathan Scarlett · Volkan Cevher -
2017 Talk: Robust Submodular Maximization: A Non-Uniform Partitioning Approach »
Ilija Bogunovic · Slobodan Mitrovic · Jonathan Scarlett · Volkan Cevher