Timezone: »
Information-theoretic Bayesian optimisation techniques have demonstrated state-of-the-art performance in tackling important global optimisation problems. However, current information-theoretic approaches require many approximations in implementation, introduce often-prohibitive computational overhead and limit the choice of kernels available to model the objective. We develop a fast information-theoretic Bayesian Optimisation method, FITBO, that avoids the need for sampling the global minimiser, thus significantly reducing computational overhead. Moreover, in comparison with existing approaches, our method faces fewer constraints on kernel choice and enjoys the merits of dealing with the output space. We demonstrate empirically that FITBO inherits the performance associated with information-theoretic Bayesian optimisation, while being even faster than simpler Bayesian optimisation approaches, such as Expected Improvement.
Author Information
Binxin Ru (University of Oxford)
Michael A Osborne (U Oxford)
Mark Mcleod (University of Oxford)
Diego Granziol (Oxford)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Fast Information-theoretic Bayesian Optimisation »
Thu. Jul 12th 11:30 -- 11:50 AM Room A3
More from the Same Authors
-
2021 : Attacking Graph Classification via Bayesian Optimisation »
Xingchen Wan · Henry Kenlay · Binxin Ru · Arno Blaas · Michael A Osborne · Xiaowen Dong -
2021 : Revisiting Design Choices in Offline Model Based Reinforcement Learning »
Cong Lu · Philip Ball · Jack Parker-Holder · Michael A Osborne · Stephen Roberts -
2022 : Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations »
Cong Lu · Philip Ball · Tim G. J Rudner · Jack Parker-Holder · Michael A Osborne · Yee-Whye Teh -
2022 Poster: Robust Multi-Objective Bayesian Optimization Under Input Noise »
Samuel Daulton · Sait Cakmak · Maximilian Balandat · Michael A Osborne · Enlu Zhou · Eytan Bakshy -
2022 Spotlight: Robust Multi-Objective Bayesian Optimization Under Input Noise »
Samuel Daulton · Sait Cakmak · Maximilian Balandat · Michael A Osborne · Enlu Zhou · Eytan Bakshy -
2021 Workshop: Challenges in Deploying and monitoring Machine Learning Systems »
Alessandra Tosi · Nathan Korda · Michael A Osborne · Stephen Roberts · Andrei Paleyes · Fariba Yousefi -
2021 Poster: Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces »
Xingchen Wan · Vu Nguyen · Huong Ha · Binxin Ru · Cong Lu · Michael A Osborne -
2021 Poster: Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search »
Vu Nguyen · Tam Le · Makoto Yamada · Michael A Osborne -
2021 Spotlight: Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces »
Xingchen Wan · Vu Nguyen · Huong Ha · Binxin Ru · Cong Lu · Michael A Osborne -
2021 Spotlight: Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search »
Vu Nguyen · Tam Le · Makoto Yamada · Michael A Osborne -
2021 Social: The ICML Debate: Should AI Research and Development Be Controlled by a Regulatory Body or Government Oversight? »
Yunpeng Li · Olga Isupova · Nika Haghtalab · Adam White · Diego Granziol -
2020 Poster: Knowing The What But Not The Where in Bayesian Optimization »
Vu Nguyen · Michael A Osborne -
2020 Poster: Bayesian Optimisation over Multiple Continuous and Categorical Inputs »
Binxin Ru · Ahsan Alvi · Vu Nguyen · Michael A Osborne · Stephen Roberts -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 Poster: On the Limitations of Representing Functions on Sets »
Edward Wagstaff · Fabian Fuchs · Martin Engelcke · Ingmar Posner · Michael A Osborne -
2019 Oral: On the Limitations of Representing Functions on Sets »
Edward Wagstaff · Fabian Fuchs · Martin Engelcke · Ingmar Posner · Michael A Osborne -
2019 Poster: Automated Model Selection with Bayesian Quadrature »
Henry Chai · Jean-Francois Ton · Michael A Osborne · Roman Garnett -
2019 Poster: AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs »
Gabriele Abbati · Philippe Wenk · Michael A Osborne · Andreas Krause · Bernhard Schölkopf · Stefan Bauer -
2019 Poster: Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation »
Ahsan Alvi · Binxin Ru · Jan-Peter Calliess · Stephen Roberts · Michael A Osborne -
2019 Oral: Automated Model Selection with Bayesian Quadrature »
Henry Chai · Jean-Francois Ton · Michael A Osborne · Roman Garnett -
2019 Oral: AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs »
Gabriele Abbati · Philippe Wenk · Michael A Osborne · Andreas Krause · Bernhard Schölkopf · Stefan Bauer -
2019 Oral: Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation »
Ahsan Alvi · Binxin Ru · Jan-Peter Calliess · Stephen Roberts · Michael A Osborne -
2019 Poster: Fingerprint Policy Optimisation for Robust Reinforcement Learning »
Supratik Paul · Michael A Osborne · Shimon Whiteson -
2019 Oral: Fingerprint Policy Optimisation for Robust Reinforcement Learning »
Supratik Paul · Michael A Osborne · Shimon Whiteson -
2018 Poster: Optimization, fast and slow: optimally switching between local and Bayesian optimization »
Mark McLeod · Stephen Roberts · Michael A Osborne -
2018 Oral: Optimization, fast and slow: optimally switching between local and Bayesian optimization »
Mark McLeod · Stephen Roberts · Michael A Osborne