Timezone: »
Stein variational gradient descent (SVGD) is a recently proposed particle-based Bayesian inference method, which has attracted a lot of interest due to its remarkable approximation ability and particle efficiency compared to traditional variational inference and Markov Chain Monte Carlo methods. However, we observed that particles of SVGD tend to collapse to modes of the target distribution, and this particle degeneracy phenomenon becomes more severe with higher dimensions. Our theoretical analysis finds out that there exists a negative correlation between the dimensionality and the repulsive force of SVGD which should be blamed for this phenomenon. We propose Message Passing SVGD (MP-SVGD) to solve this problem. By leveraging the conditional independence structure of probabilistic graphical models (PGMs), MP-SVGD converts the original high-dimensional global inference problem into a set of local ones over the Markov blanket with lower dimensions. Experimental results show its advantages of preventing vanishing repulsive force in high-dimensional space over SVGD, and its particle efficiency and approximation flexibility over other inference methods on graphical models.
Author Information
Jingwei Zhuo (Tsinghua University)
Chang Liu (Tsinghua University)
Jiaxin Shi (Tsinghua University)
Jun Zhu (Tsinghua University)
Ning Chen
Bo Zhang (Tsinghua University)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Message Passing Stein Variational Gradient Descent »
Fri. Jul 13th 03:40 -- 03:50 PM Room A4
More from the Same Authors
-
2021 : Towards Safe Reinforcement Learning via Constraining Conditional Value at Risk »
Chengyang Ying · Xinning Zhou · Dong Yan · Jun Zhu -
2021 : Strategically-timed State-Observation Attacks on Deep Reinforcement Learning Agents »
Xinning Zhou · You Qiaoben · Chengyang Ying · Jun Zhu -
2021 : Adversarial Semantic Contour for Object Detection »
Yichi Zhang · Zijian Zhu · Xiao Yang · Jun Zhu -
2021 : Query-based Adversarial Attacks on Graph with Fake Nodes »
Zhengyi Wang · Zhongkai Hao · Jun Zhu -
2023 Poster: MultiAdam: Parameter-wise Scale-invariant Optimizer for Physics-informed Neural Network »
Jiachen Yao · Chang Su · Zhongkai Hao · LIU SONGMING · Hang Su · Jun Zhu -
2023 Poster: NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data »
LIU SONGMING · Zhongkai Hao · Chengyang Ying · Hang Su · Ze Cheng · Jun Zhu -
2023 Poster: Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs »
Kaiwen Zheng · Cheng Lu · Jianfei Chen · Jun Zhu -
2023 Poster: GNOT: A General Neural Operator Transformer for Operator Learning »
Zhongkai Hao · Chengyang Ying · Zhengyi Wang · Hang Su · Yinpeng Dong · LIU SONGMING · Ze Cheng · Jun Zhu · Jian Song -
2023 Poster: Exact Energy-Guided Diffusion Sampling via Contrastive Energy Prediction »
Cheng Lu · Huayu Chen · Jianfei Chen · Hang Su · Chongxuan Li · Jun Zhu -
2023 Poster: One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale »
Fan Bao · Shen Nie · Kaiwen Xue · Shi Pu · Yaole Wang · Gang Yue · Yue Cao · Chongxuan Li · Hang Su · Jun Zhu -
2023 Poster: Stabilizing GANs’ Training with Brownian Motion Controller »
Tianjiao Luo · Ziyu Zhu · Jianfei Chen · Jun Zhu -
2023 Poster: Revisiting Discriminative vs. Generative Classifiers: Theory and Implications »
Chenyu Zheng · Guoqiang Wu · Fan Bao · Yue Cao · Chongxuan Li · Jun Zhu -
2022 Poster: NeuralEF: Deconstructing Kernels by Deep Neural Networks »
Zhijie Deng · Jiaxin Shi · Jun Zhu -
2022 Spotlight: NeuralEF: Deconstructing Kernels by Deep Neural Networks »
Zhijie Deng · Jiaxin Shi · Jun Zhu -
2022 Poster: Robustness and Accuracy Could Be Reconcilable by (Proper) Definition »
Tianyu Pang · Min Lin · Xiao Yang · Jun Zhu · Shuicheng Yan -
2022 Poster: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang -
2022 Spotlight: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang -
2022 Spotlight: Robustness and Accuracy Could Be Reconcilable by (Proper) Definition »
Tianyu Pang · Min Lin · Xiao Yang · Jun Zhu · Shuicheng Yan -
2022 Poster: Thompson Sampling for (Combinatorial) Pure Exploration »
Siwei Wang · Jun Zhu -
2022 Spotlight: Thompson Sampling for (Combinatorial) Pure Exploration »
Siwei Wang · Jun Zhu -
2021 Poster: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2021 Spotlight: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2020 Poster: Understanding and Stabilizing GANs' Training Dynamics Using Control Theory »
Kun Xu · Chongxuan Li · Jun Zhu · Bo Zhang -
2020 Poster: Variance Reduction and Quasi-Newton for Particle-Based Variational Inference »
Michael Zhu · Chang Liu · Jun Zhu -
2020 Poster: Learning Optimal Tree Models under Beam Search »
Jingwei Zhuo · Ziru Xu · Wei Dai · Han Zhu · HAN LI · Jian Xu · Kun Gai -
2020 Poster: VFlow: More Expressive Generative Flows with Variational Data Augmentation »
Jianfei Chen · Cheng Lu · Biqi Chenli · Jun Zhu · Tian Tian -
2020 Poster: Nonparametric Score Estimators »
Yuhao Zhou · Jiaxin Shi · Jun Zhu -
2019 Poster: Scalable Training of Inference Networks for Gaussian-Process Models »
Jiaxin Shi · Mohammad Emtiyaz Khan · Jun Zhu -
2019 Poster: Understanding and Accelerating Particle-Based Variational Inference »
Chang Liu · Jingwei Zhuo · Pengyu Cheng · RUIYI (ROY) ZHANG · Jun Zhu -
2019 Oral: Understanding and Accelerating Particle-Based Variational Inference »
Chang Liu · Jingwei Zhuo · Pengyu Cheng · RUIYI (ROY) ZHANG · Jun Zhu -
2019 Oral: Scalable Training of Inference Networks for Gaussian-Process Models »
Jiaxin Shi · Mohammad Emtiyaz Khan · Jun Zhu -
2019 Poster: Improving Adversarial Robustness via Promoting Ensemble Diversity »
Tianyu Pang · Kun Xu · Chao Du · Ning Chen · Jun Zhu -
2019 Poster: Understanding MCMC Dynamics as Flows on the Wasserstein Space »
Chang Liu · Jingwei Zhuo · Jun Zhu -
2019 Oral: Understanding MCMC Dynamics as Flows on the Wasserstein Space »
Chang Liu · Jingwei Zhuo · Jun Zhu -
2019 Oral: Improving Adversarial Robustness via Promoting Ensemble Diversity »
Tianyu Pang · Kun Xu · Chao Du · Ning Chen · Jun Zhu -
2018 Poster: Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors »
Yichi Zhou · Jun Zhu · Jingwei Zhuo -
2018 Oral: Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors »
Yichi Zhou · Jun Zhu · Jingwei Zhuo -
2018 Poster: Max-Mahalanobis Linear Discriminant Analysis Networks »
Tianyu Pang · Chao Du · Jun Zhu -
2018 Poster: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Oral: Max-Mahalanobis Linear Discriminant Analysis Networks »
Tianyu Pang · Chao Du · Jun Zhu -
2018 Oral: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Poster: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Poster: A Spectral Approach to Gradient Estimation for Implicit Distributions »
Jiaxin Shi · Shengyang Sun · Jun Zhu -
2018 Oral: A Spectral Approach to Gradient Estimation for Implicit Distributions »
Jiaxin Shi · Shengyang Sun · Jun Zhu -
2018 Oral: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2017 Poster: Identify the Nash Equilibrium in Static Games with Random Payoffs »
Yichi Zhou · Jialian Li · Jun Zhu -
2017 Talk: Identify the Nash Equilibrium in Static Games with Random Payoffs »
Yichi Zhou · Jialian Li · Jun Zhu