Timezone: »
Interpretability of representations in both deep generative and discriminative models is highly desirable. Current methods jointly optimize an objective combining accuracy and interpretability. However, this may reduce accuracy, and is not applicable to already trained models. We propose two interpretability frameworks. First, we provide an interpretable lens for an existing model. We use a generative model which takes as input the representation in an existing (generative or discriminative) model, weakly supervised by limited side information. Applying a flexible and invertible transformation to the input leads to an interpretable representation with no loss in accuracy. We extend the approach using an active learning strategy to choose the most useful side information to obtain, allowing a human to guide what "interpretable" means. Our second framework relies on joint optimization for a representation which is both maximally informative about the side information and maximally compressive about the non-interpretable data factors. This leads to a novel perspective on the relationship between compression and regularization. We also propose a new interpretability evaluation metric based on our framework. Empirically, we achieve state-of-the-art results on three datasets using the two proposed algorithms.
Author Information
Tameem Adel (University of Cambridge)
Zoubin Ghahramani (University of Cambridge & Uber)
Zoubin Ghahramani is a Professor at the University of Cambridge, and Chief Scientist at Uber. He is also Deputy Director of the Leverhulme Centre for the Future of Intelligence, was a founding Director of the Alan Turing Institute and co-founder of Geometric Intelligence (now Uber AI Labs). His research focuses on probabilistic approaches to machine learning and AI. In 2015 he was elected a Fellow of the Royal Society.
Adrian Weller (University of Cambridge, Alan Turing Institute)

Adrian Weller is Programme Director for AI at The Alan Turing Institute, the UK national institute for data science and AI, and is a Turing AI Fellow leading work on trustworthy Machine Learning (ML). He is a Principal Research Fellow in ML at the University of Cambridge, and at the Leverhulme Centre for the Future of Intelligence where he is Programme Director for Trust and Society. His interests span AI, its commercial applications and helping to ensure beneficial outcomes for society. Previously, Adrian held senior roles in finance. He received a PhD in computer science from Columbia University, and an undergraduate degree in mathematics from Trinity College, Cambridge.
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Discovering Interpretable Representations for Both Deep Generative and Discriminative Models »
Wed. Jul 11th 01:00 -- 01:10 PM Room A7
More from the Same Authors
-
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
· Dan Ley · Umang Bhatt · Adrian Weller -
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
Dan Ley · Umang Bhatt · Adrian Weller -
2021 : On the Fairness of Causal Algorithmic Recourse »
Julius von Kügelgen · Amir-Hossein Karimi · Umang Bhatt · Isabel Valera · Adrian Weller · Bernhard Schölkopf · Amir-Hossein Karimi -
2021 : Towards Principled Disentanglement for Domain Generalization »
Hanlin Zhang · Yi-Fan Zhang · Weiyang Liu · Adrian Weller · Bernhard Schölkopf · Eric Xing -
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
Dan Ley · Umang Bhatt · Adrian Weller -
2021 : CrossWalk: Fairness-enhanced Node Representation Learning »
Ahmad Khajehnejad · Moein Khajehnejad · Krishna Gummadi · Adrian Weller · Baharan Mirzasoleiman -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Perspectives on Incorporating Expert Feedback into Model Updates »
Valerie Chen · Umang Bhatt · Hoda Heidari · Adrian Weller · Ameet Talwalkar -
2023 : Algorithms for Optimal Adaptation of Diffusion Models to Reward Functions »
Krishnamurthy Dvijotham · Shayegan Omidshafiei · Kimin Lee · Katie Collins · Deepak Ramachandran · Adrian Weller · Mohammad Ghavamzadeh · Milad Nasresfahani · Ying Fan · Jeremiah Liu -
2023 : The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling probabilistic social inferences from linguistic inputs »
Lance Ying · Katie Collins · Megan Wei · Cedegao Zhang · Tan Zhi-Xuan · Adrian Weller · Josh Tenenbaum · Catherine Wong -
2023 Oral: Simplex Random Features »
Isaac Reid · Krzysztof Choromanski · Valerii Likhosherstov · Adrian Weller -
2023 Poster: Efficient Graph Field Integrators Meet Point Clouds »
Krzysztof Choromanski · Arijit Sehanobish · Han Lin · YUNFAN ZHAO · Eli Berger · Tetiana Parshakova · Qingkai Pan · David Watkins · Tianyi Zhang · Valerii Likhosherstov · Somnath Basu Roy Chowdhury · Kumar Avinava Dubey · Deepali Jain · Tamas Sarlos · Snigdha Chaturvedi · Adrian Weller -
2023 Poster: Simplex Random Features »
Isaac Reid · Krzysztof Choromanski · Valerii Likhosherstov · Adrian Weller -
2023 Poster: Neural Diffusion Processes »
Vincent Dutordoir · Alan Saul · Zoubin Ghahramani · Fergus Simpson -
2023 Poster: Is Learning Summary Statistics Necessary for Likelihood-free Inference? »
Yanzhi Chen · Michael Gutmann · Adrian Weller -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Spotlight Presentations »
Adrian Weller · Osbert Bastani · Jake Snell · Tal Schuster · Stephen Bates · Zhendong Wang · Margaux Zaffran · Danielle Rasooly · Varun Babbar -
2022 Workshop: Workshop on Human-Machine Collaboration and Teaming »
Umang Bhatt · Katie Collins · Maria De-Arteaga · Bradley Love · Adrian Weller -
2022 Poster: From block-Toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked Transformers »
Krzysztof Choromanski · Han Lin · Haoxian Chen · Tianyi Zhang · Arijit Sehanobish · Valerii Likhosherstov · Jack Parker-Holder · Tamas Sarlos · Adrian Weller · Thomas Weingarten -
2022 Poster: Measuring Representational Robustness of Neural Networks Through Shared Invariances »
Vedant Nanda · Till Speicher · Camila Kolling · John P Dickerson · Krishna Gummadi · Adrian Weller -
2022 Oral: Measuring Representational Robustness of Neural Networks Through Shared Invariances »
Vedant Nanda · Till Speicher · Camila Kolling · John P Dickerson · Krishna Gummadi · Adrian Weller -
2022 Spotlight: From block-Toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked Transformers »
Krzysztof Choromanski · Han Lin · Haoxian Chen · Tianyi Zhang · Arijit Sehanobish · Valerii Likhosherstov · Jack Parker-Holder · Tamas Sarlos · Adrian Weller · Thomas Weingarten -
2021 Poster: Debiasing a First-order Heuristic for Approximate Bi-level Optimization »
Valerii Likhosherstov · Xingyou Song · Krzysztof Choromanski · Jared Quincy Davis · Adrian Weller -
2021 Spotlight: Debiasing a First-order Heuristic for Approximate Bi-level Optimization »
Valerii Likhosherstov · Xingyou Song · Krzysztof Choromanski · Jared Quincy Davis · Adrian Weller -
2020 Workshop: 5th ICML Workshop on Human Interpretability in Machine Learning (WHI) »
Adrian Weller · Alice Xiang · Amit Dhurandhar · Been Kim · Dennis Wei · Kush Varshney · Umang Bhatt -
2020 Poster: Stochastic Flows and Geometric Optimization on the Orthogonal Group »
Krzysztof Choromanski · David Cheikhi · Jared Quincy Davis · Valerii Likhosherstov · Achille Nazaret · Achraf Bahamou · Xingyou Song · Mrugank Akarte · Jack Parker-Holder · Jacob Bergquist · Yuan Gao · Aldo Pacchiano · Tamas Sarlos · Adrian Weller · Vikas Sindhwani -
2020 Poster: Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits »
Robert Peharz · Steven Lang · Antonio Vergari · Karl Stelzner · Alejandro Molina · Martin Trapp · Guy Van den Broeck · Kristian Kersting · Zoubin Ghahramani -
2019 Workshop: Human In the Loop Learning (HILL) »
Xin Wang · Xin Wang · Fisher Yu · Shanghang Zhang · Joseph Gonzalez · Yangqing Jia · Sarah Bird · Kush Varshney · Been Kim · Adrian Weller -
2019 Poster: Unifying Orthogonal Monte Carlo Methods »
Krzysztof Choromanski · Mark Rowland · Wenyu Chen · Adrian Weller -
2019 Oral: Unifying Orthogonal Monte Carlo Methods »
Krzysztof Choromanski · Mark Rowland · Wenyu Chen · Adrian Weller -
2019 Poster: TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning »
Tameem Adel · Adrian Weller -
2019 Oral: TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning »
Tameem Adel · Adrian Weller -
2018 Poster: Blind Justice: Fairness with Encrypted Sensitive Attributes »
Niki Kilbertus · Adria Gascon · Matt Kusner · Michael Veale · Krishna Gummadi · Adrian Weller -
2018 Oral: Blind Justice: Fairness with Encrypted Sensitive Attributes »
Niki Kilbertus · Adria Gascon · Matt Kusner · Michael Veale · Krishna Gummadi · Adrian Weller -
2018 Poster: Bucket Renormalization for Approximate Inference »
Sungsoo Ahn · Michael Chertkov · Adrian Weller · Jinwoo Shin -
2018 Poster: Variational Bayesian dropout: pitfalls and fixes »
Jiri Hron · Alexander Matthews · Zoubin Ghahramani -
2018 Poster: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Oral: Variational Bayesian dropout: pitfalls and fixes »
Jiri Hron · Alexander Matthews · Zoubin Ghahramani -
2018 Oral: Bucket Renormalization for Approximate Inference »
Sungsoo Ahn · Michael Chertkov · Adrian Weller · Jinwoo Shin -
2018 Oral: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Poster: Structured Evolution with Compact Architectures for Scalable Policy Optimization »
Krzysztof Choromanski · Mark Rowland · Vikas Sindhwani · Richard E Turner · Adrian Weller -
2018 Oral: Structured Evolution with Compact Architectures for Scalable Policy Optimization »
Krzysztof Choromanski · Mark Rowland · Vikas Sindhwani · Richard E Turner · Adrian Weller -
2017 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Jacob Steinhardt · Adrian Weller · Smitha Milli -
2017 : A. Weller, "Challenges for Transparency" »
Adrian Weller -
2017 Workshop: Workshop on Human Interpretability in Machine Learning (WHI) »
Kush Varshney · Adrian Weller · Been Kim · Dmitry Malioutov -
2017 Poster: Magnetic Hamiltonian Monte Carlo »
Nilesh Tripuraneni · Mark Rowland · Zoubin Ghahramani · Richard E Turner -
2017 Talk: Magnetic Hamiltonian Monte Carlo »
Nilesh Tripuraneni · Mark Rowland · Zoubin Ghahramani · Richard E Turner -
2017 Poster: Lost Relatives of the Gumbel Trick »
Matej Balog · Nilesh Tripuraneni · Zoubin Ghahramani · Adrian Weller -
2017 Poster: Bayesian inference on random simple graphs with power law degree distributions »
Juho Lee · Creighton Heaukulani · Zoubin Ghahramani · Lancelot F. James · Seungjin Choi -
2017 Talk: Lost Relatives of the Gumbel Trick »
Matej Balog · Nilesh Tripuraneni · Zoubin Ghahramani · Adrian Weller -
2017 Talk: Bayesian inference on random simple graphs with power law degree distributions »
Juho Lee · Creighton Heaukulani · Zoubin Ghahramani · Lancelot F. James · Seungjin Choi -
2017 Poster: Automatic Discovery of the Statistical Types of Variables in a Dataset »
Isabel Valera · Zoubin Ghahramani -
2017 Poster: A Birth-Death Process for Feature Allocation »
Konstantina Palla · David Knowles · Zoubin Ghahramani -
2017 Poster: Deep Bayesian Active Learning with Image Data »
Yarin Gal · Riashat Islam · Zoubin Ghahramani -
2017 Talk: A Birth-Death Process for Feature Allocation »
Konstantina Palla · David Knowles · Zoubin Ghahramani -
2017 Talk: Deep Bayesian Active Learning with Image Data »
Yarin Gal · Riashat Islam · Zoubin Ghahramani -
2017 Talk: Automatic Discovery of the Statistical Types of Variables in a Dataset »
Isabel Valera · Zoubin Ghahramani