Timezone: »

Invited Talk
Intelligence per Kilowatthour
Max Welling

Thu Jul 12 12:00 AM -- 01:00 AM (PDT) @ A1

In the 19th century the world was revolutionized because we could transform energy into useful work. The 21st century is revolutionized due to our ability to transform information (or data) into useful tools. Driven by Moore's law and the exponential growth of data, artificial intelligence is permeating every aspect of our lives. But intelligence is not for free, it costs energy, and therefore money. Evolution has faced this problem for millions of years and made brains about a 100x more energy efficient than modern hardware (or, as in the case of the sea-squirt, decided that it should eat its brain once is was no longer necessary). I will argue that energy will soon be one of the determining factors in AI. Either companies will find it too expensive to run energy hungry ML tools (such as deep learning) to power their AI engines, or the heat dissipation in edge devices will be too high to be safe. The next battleground in AI might well be a race for the most energy efficient combination of hardware and algorithms.

In this talk I will discuss some ideas that could address this problem. The technical hammer that I will exploit is the perfect reflection of the energy versus information balancing act we must address: the free energy, which is the expected energy minus the entropy of a system. Using the free energy we develop a Bayesian interpretation of deep learning which, with the appropriate sparsity inducing priors, can be used to prune both neurons and quantize parameters to low precision. The second hammer I will exploit is sigma-delta modulation (also known as herding) to introduce spiking into deep learning in an attempt to avoid computation in the absence of changes.

Author Information

Max Welling (University of Amsterdam)

Prof. Dr. Max Welling is a research chair in Machine Learning at the University of Amsterdam and a VP Technologies at Qualcomm. He has a secondary appointment as a senior fellow at the Canadian Institute for Advanced Research (CIFAR). He is co-founder of “Scyfer BV” a university spin-off in deep learning which got acquired by Qualcomm in summer 2017. In the past he held postdoctoral positions at Caltech (’98-’00), UCL (’00-’01) and the U. Toronto (’01-’03). He received his PhD in ’98 under supervision of Nobel laureate Prof. G. 't Hooft. Max Welling has served as associate editor in chief of IEEE TPAMI from 2011-2015 (impact factor 4.8). He serves on the board of the NIPS foundation since 2015 (the largest conference in machine learning) and has been program chair and general chair of NIPS in 2013 and 2014 respectively. He was also program chair of AISTATS in 2009 and ECCV in 2016 and general chair of MIDL 2018. He has served on the editorial boards of JMLR and JML and was an associate editor for Neurocomputing, JCGS and TPAMI. He received multiple grants from Google, Facebook, Yahoo, NSF, NIH, NWO and ONR-MURI among which an NSF career grant in 2005. He is recipient of the ECCV Koenderink Prize in 2010. Welling is in the board of the Data Science Research Center in Amsterdam, he directs the Amsterdam Machine Learning Lab (AMLAB), and co-directs the Qualcomm-UvA deep learning lab (QUVA) and the Bosch-UvA Deep Learning lab (DELTA). Max Welling has over 200 scientific publications in machine learning, computer vision, statistics and physics.

More from the Same Authors