Timezone: »

 
Tutorial
Optimization Perspectives on Learning to Control
Benjamin Recht

Tue Jul 10 06:45 AM -- 09:00 AM (PDT) @ A9

Given the dramatic successes in machine learning over the past half decade, there has been a resurgence of interest in applying learning techniques to continuous control problems in robotics, self-driving cars, and unmanned aerial vehicles. Though such applications appear to be straightforward generalizations of reinforcement learning, it remains unclear which machine learning tools are best equipped to handle decision making, planning, and actuation in highly uncertain dynamic environments.

This tutorial will survey the foundations required to build machine learning systems that reliably act upon the physical world. The primary technical focus will be on numerical optimization tools at the interface of statistical learning and dynamical systems. We will investigate how to learn models of dynamical systems, how to use data to achieve objectives in a timely fashion, how to balance model specification and system controllability, and how to safely acquire new information to improve performance. We will close by listing several exciting open problems that must be solved before we can build robust, reliable learning systems that interact with an uncertain environment.

Author Information

Benjamin Recht (Berkeley)

Benjamin Recht is an Associate Professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. Ben's research group studies the theory and practice of optimization algorithms with a focus on applications in machine learning, data analysis, and controls. Ben is the recipient of a Presidential Early Career Awards for Scientists and Engineers, an Alfred P. Sloan Research Fellowship, the 2012 SIAM/MOS Lagrange Prize in Continuous Optimization, the 2014 Jamon Prize, the 2015 William O. Baker Award for Initiatives in Research, and the 2017 NIPS Test of Time Award.

More from the Same Authors