Timezone: »
In machine learning, we use data to automatically find dependences in the world, with the goal of predicting future observations. Most machine learning methods build on statistics, but one can also try to go beyond this, assaying causal structures underlying statistical dependences. Can such causal knowledge help prediction in machine learning tasks? We argue that this is indeed the case, due to the fact that causal models are more robust to changes that occur in real world datasets. We discuss implications of causality for machine learning tasks, and argue that many of the hard issues benefit from the causal viewpoint. This includes domain adaptation, semi-supervised learning, transfer, life-long learning, and fairness, as well as an application to the removal of systematic errors in astronomical problems.
Author Information
Bernhard Schölkopf (MPI for Intelligent Systems Tübingen, Germany)
Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.
More from the Same Authors
-
2020 Workshop: Inductive Biases, Invariances and Generalization in Reinforcement Learning »
Anirudh Goyal · Rosemary Nan Ke · Stefan Bauer · Jane Wang · Theophane Weber · Fabio Viola · Bernhard Schölkopf · Stefan Bauer -
2020 Poster: Weakly-Supervised Disentanglement Without Compromises »
Francesco Locatello · Ben Poole · Gunnar Ratsch · Bernhard Schölkopf · Olivier Bachem · Michael Tschannen -
2019 Poster: Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness »
Raphael Suter · Djordje Miladinovic · Bernhard Schölkopf · Stefan Bauer -
2019 Oral: Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness »
Raphael Suter · Djordje Miladinovic · Bernhard Schölkopf · Stefan Bauer -
2019 Poster: Kernel Mean Matching for Content Addressability of GANs »
Wittawat Jitkrittum · Wittawat Jitkrittum · Patsorn Sangkloy · Muhammad Waleed Gondal · Amit Raj · James Hays · Bernhard Schölkopf -
2019 Oral: Kernel Mean Matching for Content Addressability of GANs »
Wittawat Jitkrittum · Wittawat Jitkrittum · Patsorn Sangkloy · Patsorn Sangkloy · Muhammad Waleed Gondal · Muhammad Waleed Gondal · Amit Raj · Amit Raj · James Hays · James Hays · Bernhard Schölkopf · Bernhard Schölkopf -
2019 Poster: First-Order Adversarial Vulnerability of Neural Networks and Input Dimension »
Carl-Johann Simon-Gabriel · Yann Ollivier · Leon Bottou · Bernhard Schölkopf · David Lopez-Paz -
2019 Poster: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem -
2019 Oral: First-Order Adversarial Vulnerability of Neural Networks and Input Dimension »
Carl-Johann Simon-Gabriel · Yann Ollivier · Leon Bottou · Bernhard Schölkopf · David Lopez-Paz -
2019 Oral: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem -
2018 Poster: Detecting non-causal artifacts in multivariate linear regression models »
Dominik Janzing · Bernhard Schölkopf -
2018 Poster: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Oral: Detecting non-causal artifacts in multivariate linear regression models »
Dominik Janzing · Bernhard Schölkopf -
2018 Oral: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Poster: Tempered Adversarial Networks »
Mehdi S. M. Sajjadi · Giambattista Parascandolo · Arash Mehrjou · Bernhard Schölkopf -
2018 Poster: Differentially Private Database Release via Kernel Mean Embeddings »
Matej Balog · Ilya Tolstikhin · Bernhard Schölkopf -
2018 Oral: Differentially Private Database Release via Kernel Mean Embeddings »
Matej Balog · Ilya Tolstikhin · Bernhard Schölkopf -
2018 Oral: Tempered Adversarial Networks »
Mehdi S. M. Sajjadi · Giambattista Parascandolo · Arash Mehrjou · Bernhard Schölkopf -
2018 Poster: Learning Independent Causal Mechanisms »
Giambattista Parascandolo · Niki Kilbertus · Mateo Rojas-Carulla · Bernhard Schölkopf -
2018 Oral: Learning Independent Causal Mechanisms »
Giambattista Parascandolo · Niki Kilbertus · Mateo Rojas-Carulla · Bernhard Schölkopf