Timezone: »
We present MxNet Gluon, an easy to use tool for designing a wide range of networks from image processing (LeNet, inception, etc.) to advanced NLP (TreeLSTM). It combines the convenience of imperative frameworks (PyTorch, Torch, Chainer) with efficient symbolic execution (TensorFlow, CNTK). The tutorial covers the following issues: basic distributed linear algebra with NDArray, automatic differentiation of code, and designing networks from scratch (and using Gluon). Subsequently we cover convenience and efficiency features such as automagic shape inference, deferred initialization and lazy evaluation, and hybridization of compute graphs. We then discuss structured architectures such as TreeLSTMs, which are key for natural language processing. We conclude by showing how to perform parallel and distributed training on multiple GPUs and multiple machines. For Jupyter notebooks and details see http://gluon.mxnet.io and https://github.com/zackchase/mxnet-the-straight-dope
Author Information
Alex Smola (Amazon)
Aran Khanna (Amazon)
Aran Khanna is an AI engineer in the deep learning research team at Amazon Web Services. Aran is the technical lead for deep learning services on Mobile, IoT and Edge devices, working to allow for deployment and management of efficient deep network models across a broad set of devices outside of the data center, from Raspberry Pis to smartphones to NVIDIA Jetsons. Aran recently graduated from Harvard's Computer Science department before joining the AWS team.
More from the Same Authors
-
2021 : Multimodal AutoML on Structured Tables with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alex Smola -
2021 : Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alex Smola -
2022 : Adaptive Interest for Emphatic Reinforcement Learning »
Martin Klissarov · Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Taesup Kim · Alex Smola -
2023 Poster: RLSbench: Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · University of California James Sharpnack · Alex Smola · Sivaraman Balakrishnan · Zachary Lipton -
2022 : Discussion Panel »
Percy Liang · Léon Bottou · Jayashree Kalpathy-Cramer · Alex Smola -
2022 Poster: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2022 Oral: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2020 : Panel Discussion »
Neil Lawrence · Mihaela van der Schaar · Alex Smola · Valerio Perrone · Jack Parker-Holder · Zhengying Liu -
2020 : "AutoGluon and Distillation" by Alex Smola »
Alex Smola -
2019 Poster: Deep Factors for Forecasting »
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski -
2019 Oral: Deep Factors for Forecasting »
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski -
2019 Tutorial: A Tutorial on Attention in Deep Learning »
Alex Smola · Aston Zhang -
2018 Poster: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2017 Poster: Canopy --- Fast Sampling with Cover Trees »
Manzil Zaheer · Satwik Kottur · Amr Ahmed · Jose Moura · Alex Smola -
2017 Talk: Canopy --- Fast Sampling with Cover Trees »
Manzil Zaheer · Satwik Kottur · Amr Ahmed · Jose Moura · Alex Smola -
2017 Poster: Latent LSTM Allocation: Joint clustering and non-linear dynamic modeling of sequence data »
Manzil Zaheer · Amr Ahmed · Alex Smola -
2017 Talk: Latent LSTM Allocation: Joint clustering and non-linear dynamic modeling of sequence data »
Manzil Zaheer · Amr Ahmed · Alex Smola