Timezone: »
We focus on predicting sleep stages from radio measurements without any attached sensors on subjects. We introduce a new predictive model that combines convolutional and recurrent neural networks to extract sleep-specific subject-invariant features from RF signals and capture the temporal progression of sleep. A key innovation underlying our approach is a modified adversarial training regime that discards extraneous information specific to individuals or measurement conditions, while retaining all information relevant to the predictive task. We analyze our game theoretic setup and empirically demonstrate that our model achieves significant improvements over state-of-the-art solutions.
Author Information
Mingmin Zhao (MIT)
Shichao Yue (MIT)
Dina Katabi (MIT)
Tommi Jaakkola (MIT)
Matt Bianchi (Massachusetts General Hospital)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Talk: Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture »
Wed. Aug 9th 01:42 -- 02:00 AM Room C4.6 & C4.7
More from the Same Authors
-
2023 : Optimizing protein fitness using Bi-level Gibbs sampling with Graph-based Smoothing »
Andrew Kirjner · Jason Yim · Raman Samusevich · Tommi Jaakkola · Regina Barzilay · Ila R. Fiete -
2023 : Optimizing protein fitness using Gibbs sampling with Graph-based Smoothing »
Andrew Kirjner · Jason Yim · Raman Samusevich · Tommi Jaakkola · Regina Barzilay · Ila R. Fiete -
2023 : Invited Talk by Tommi Jaakkola »
Tommi Jaakkola -
2023 Poster: PFGM++: Unlocking the Potential of Physics-Inspired Generative Models »
Yilun Xu · Ziming Liu · Yonglong Tian · Shangyuan Tong · Max Tegmark · Tommi Jaakkola -
2023 Poster: Towards Coherent Image Inpainting Using Denoising Diffusion Implicit Models »
Guanhua Zhang · Jiabao Ji · Yang Zhang · Mo Yu · Tommi Jaakkola · Shiyu Chang -
2023 Poster: Change is Hard: A Closer Look at Subpopulation Shift »
Yuzhe Yang · Haoran Zhang · Dina Katabi · Marzyeh Ghassemi -
2023 Poster: SE(3) diffusion model with application to protein backbone generation »
Jason Yim · Brian Trippe · Valentin De Bortoli · Emile Mathieu · Arnaud Doucet · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Antibody-Antigen Docking and Design via Hierarchical Structure Refinement »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2022 Spotlight: Antibody-Antigen Docking and Design via Hierarchical Structure Refinement »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Conformal Prediction Sets with Limited False Positives »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2022 Poster: EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction »
Hannes Stärk · Octavian Ganea · Lagnajit Pattanaik · Regina Barzilay · Tommi Jaakkola -
2022 Spotlight: Conformal Prediction Sets with Limited False Positives »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2022 Spotlight: EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction »
Hannes Stärk · Octavian Ganea · Lagnajit Pattanaik · Regina Barzilay · Tommi Jaakkola -
2021 Poster: Few-Shot Conformal Prediction with Auxiliary Tasks »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2021 Poster: Delving into Deep Imbalanced Regression »
Yuzhe Yang · Kaiwen Zha · YINGCONG CHEN · Hao Wang · Dina Katabi -
2021 Spotlight: Few-Shot Conformal Prediction with Auxiliary Tasks »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2021 Oral: Delving into Deep Imbalanced Regression »
Yuzhe Yang · Kaiwen Zha · YINGCONG CHEN · Hao Wang · Dina Katabi -
2021 Poster: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Spotlight: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Poster: Learning Task Informed Abstractions »
Xiang Fu · Ge Yang · Pulkit Agrawal · Tommi Jaakkola -
2021 Spotlight: Learning Task Informed Abstractions »
Xiang Fu · Ge Yang · Pulkit Agrawal · Tommi Jaakkola -
2020 : Invited Talk: Tommi Jaakkola »
Tommi Jaakkola -
2020 Poster: Generalization and Representational Limits of Graph Neural Networks »
Vikas K Garg · Stefanie Jegelka · Tommi Jaakkola -
2020 Poster: Multi-Objective Molecule Generation using Interpretable Substructures »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2020 Poster: Educating Text Autoencoders: Latent Representation Guidance via Denoising »
Tianxiao Shen · Jonas Mueller · Regina Barzilay · Tommi Jaakkola -
2020 Poster: Invariant Rationalization »
Shiyu Chang · Yang Zhang · Mo Yu · Tommi Jaakkola -
2020 Poster: Predicting deliberative outcomes »
Vikas K Garg · Tommi Jaakkola -
2020 Poster: Hierarchical Generation of Molecular Graphs using Structural Motifs »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2020 Poster: Continuously Indexed Domain Adaptation »
Hao Wang · Hao He · Dina Katabi -
2020 Poster: Improving Molecular Design by Stochastic Iterative Target Augmentation »
Kevin Yang · Wengong Jin · Kyle Swanson · Regina Barzilay · Tommi Jaakkola -
2019 Poster: Functional Transparency for Structured Data: a Game-Theoretic Approach »
Guang-He Lee · Wengong Jin · David Alvarez-Melis · Tommi Jaakkola -
2019 Oral: Functional Transparency for Structured Data: a Game-Theoretic Approach »
Guang-He Lee · Wengong Jin · David Alvarez-Melis · Tommi Jaakkola -
2019 Poster: ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation »
Yuzhe Yang · GUO ZHANG · Zhi Xu · Dina Katabi -
2019 Oral: ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation »
Yuzhe Yang · GUO ZHANG · Zhi Xu · Dina Katabi -
2019 Poster: Circuit-GNN: Graph Neural Networks for Distributed Circuit Design »
GUO ZHANG · Hao He · Dina Katabi -
2019 Oral: Circuit-GNN: Graph Neural Networks for Distributed Circuit Design »
GUO ZHANG · Hao He · Dina Katabi -
2018 Poster: Junction Tree Variational Autoencoder for Molecular Graph Generation »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2018 Oral: Junction Tree Variational Autoencoder for Molecular Graph Generation »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2017 Poster: Sequence to Better Sequence: Continuous Revision of Combinatorial Structures »
Jonas Mueller · David Gifford · Tommi Jaakkola -
2017 Talk: Sequence to Better Sequence: Continuous Revision of Combinatorial Structures »
Jonas Mueller · David Gifford · Tommi Jaakkola -
2017 Poster: Deriving Neural Architectures from Sequence and Graph Kernels »
Tao Lei · Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2017 Talk: Deriving Neural Architectures from Sequence and Graph Kernels »
Tao Lei · Wengong Jin · Regina Barzilay · Tommi Jaakkola