Timezone: »
We provide new approximation guarantees for greedy low rank matrix estimation under standard assumptions of restricted strong convexity and smoothness. Our novel analysis also uncovers previously unknown connections between the low rank estimation and combinatorial optimization, so much so that our bounds are reminiscent of corresponding approximation bounds in submodular maximization. Additionally, we provide also provide statistical recovery guarantees. Finally, we present empirical comparison of greedy estimation with established baselines on two important real-world problems.
Author Information
RAJIV KHANNA (UT Austin)
Ethan R. Elenberg (The University of Texas at Austin)
Alexandros Dimakis (UT Austin)
Alex Dimakis is an Associate Professor at the Electrical and Computer Engineering department, University of Texas at Austin. He received his Ph.D. in electrical engineering and computer sciences from UC Berkeley. He received an ARO young investigator award in 2014, the NSF Career award in 2011, a Google faculty research award in 2012 and the Eli Jury dissertation award in 2008. He is the co-recipient of several best paper awards including the joint Information Theory and Communications Society Best Paper Award in 2012. His research interests include information theory, coding theory and machine learning.
Joydeep Ghosh (The University of Texas at Austin)
Sahand Negahban (YALE)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Talk: On Approximation Guarantees for Greedy Low Rank Optimization »
Wed. Aug 9th 04:42 -- 05:00 AM Room Parkside 2
More from the Same Authors
-
2023 Poster: Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-type Samplers »
Sitan Chen · Giannis Daras · Alexandros Dimakis -
2022 Poster: Architecture Agnostic Federated Learning for Neural Networks »
Disha Makhija · Xing Han · Nhat Ho · Joydeep Ghosh -
2022 Poster: Score-Guided Intermediate Level Optimization: Fast Langevin Mixing for Inverse Problems »
Giannis Daras · Yuval Dagan · Alexandros Dimakis · Constantinos Daskalakis -
2022 Spotlight: Architecture Agnostic Federated Learning for Neural Networks »
Disha Makhija · Xing Han · Nhat Ho · Joydeep Ghosh -
2022 Spotlight: Score-Guided Intermediate Level Optimization: Fast Langevin Mixing for Inverse Problems »
Giannis Daras · Yuval Dagan · Alexandros Dimakis · Constantinos Daskalakis -
2021 : Invited Talk: Alex Dimakis »
Alexandros Dimakis -
2021 Poster: Provable Lipschitz Certification for Generative Models »
Matt Jordan · Alexandros Dimakis -
2021 Spotlight: Provable Lipschitz Certification for Generative Models »
Matt Jordan · Alexandros Dimakis -
2021 Poster: Fairness for Image Generation with Uncertain Sensitive Attributes »
Ajil Jalal · Sushrut Karmalkar · Jessica Hoffmann · Alexandros Dimakis · Eric Price -
2021 Spotlight: Fairness for Image Generation with Uncertain Sensitive Attributes »
Ajil Jalal · Sushrut Karmalkar · Jessica Hoffmann · Alexandros Dimakis · Eric Price -
2021 Poster: Solving Inverse Problems with a Flow-based Noise Model »
Jay Whang · Qi Lei · Alexandros Dimakis -
2021 Spotlight: Solving Inverse Problems with a Flow-based Noise Model »
Jay Whang · Qi Lei · Alexandros Dimakis -
2021 Poster: Instance-Optimal Compressed Sensing via Posterior Sampling »
Ajil Jalal · Sushrut Karmalkar · Alexandros Dimakis · Eric Price -
2021 Poster: Intermediate Layer Optimization for Inverse Problems using Deep Generative Models »
Giannis Daras · Joseph Dean · Ajil Jalal · Alexandros Dimakis -
2021 Poster: Composing Normalizing Flows for Inverse Problems »
Jay Whang · Erik Lindgren · Alexandros Dimakis -
2021 Spotlight: Intermediate Layer Optimization for Inverse Problems using Deep Generative Models »
Giannis Daras · Joseph Dean · Ajil Jalal · Alexandros Dimakis -
2021 Spotlight: Instance-Optimal Compressed Sensing via Posterior Sampling »
Ajil Jalal · Sushrut Karmalkar · Alexandros Dimakis · Eric Price -
2021 Spotlight: Composing Normalizing Flows for Inverse Problems »
Jay Whang · Erik Lindgren · Alexandros Dimakis -
2020 Poster: SGD Learns One-Layer Networks in WGANs »
Qi Lei · Jason Lee · Alexandros Dimakis · Constantinos Daskalakis -
2020 Poster: Feature Selection using Stochastic Gates »
Yutaro Yamada · Ofir Lindenbaum · Sahand Negahban · Yuval Kluger -
2019 : Alex Dimakis: Coding Theory for Distributed Learning »
Alexandros Dimakis -
2019 Poster: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Oral: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Poster: Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling »
Shanshan Wu · Alexandros Dimakis · Sujay Sanghavi · Felix Xinnan Yu · Daniel Holtmann-Rice · Dmitry Storcheus · Afshin Rostamizadeh · Sanjiv Kumar -
2019 Oral: Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling »
Shanshan Wu · Alexandros Dimakis · Sujay Sanghavi · Felix Xinnan Yu · Daniel Holtmann-Rice · Dmitry Storcheus · Afshin Rostamizadeh · Sanjiv Kumar -
2018 Poster: Gradient Coding from Cyclic MDS Codes and Expander Graphs »
Netanel Raviv · Rashish Tandon · Alexandros Dimakis · Itzhak Tamo -
2018 Oral: Gradient Coding from Cyclic MDS Codes and Expander Graphs »
Netanel Raviv · Rashish Tandon · Alexandros Dimakis · Itzhak Tamo -
2017 Poster: Identifying Best Interventions through Online Importance Sampling »
Rajat Sen · Karthikeyan Shanmugam · Alexandros Dimakis · Sanjay Shakkottai -
2017 Poster: Cost-Optimal Learning of Causal Graphs »
Murat Kocaoglu · Alexandros Dimakis · Sriram Vishwanath -
2017 Talk: Identifying Best Interventions through Online Importance Sampling »
Rajat Sen · Karthikeyan Shanmugam · Alexandros Dimakis · Sanjay Shakkottai -
2017 Talk: Cost-Optimal Learning of Causal Graphs »
Murat Kocaoglu · Alexandros Dimakis · Sriram Vishwanath -
2017 Poster: Exact MAP Inference by Avoiding Fractional Vertices »
Erik Lindgren · Alexandros Dimakis · Adam Klivans -
2017 Poster: Compressed Sensing using Generative Models »
Ashish Bora · Ajil Jalal · Eric Price · Alexandros Dimakis -
2017 Poster: Gradient Coding: Avoiding Stragglers in Distributed Learning »
Rashish Tandon · Qi Lei · Alexandros Dimakis · Nikos Karampatziakis -
2017 Talk: Gradient Coding: Avoiding Stragglers in Distributed Learning »
Rashish Tandon · Qi Lei · Alexandros Dimakis · Nikos Karampatziakis -
2017 Talk: Compressed Sensing using Generative Models »
Ashish Bora · Ajil Jalal · Eric Price · Alexandros Dimakis -
2017 Talk: Exact MAP Inference by Avoiding Fractional Vertices »
Erik Lindgren · Alexandros Dimakis · Adam Klivans