Timezone: »
We propose the first multistage intervention framework that tackles fake news in social networks by combining reinforcement learning with a point process network activity model. The spread of fake news and mitigation events within the network is modeled by a multivariate Hawkes process with additional exogenous control terms. By choosing a feature representation of states, defining mitigation actions and constructing reward functions to measure the effectiveness of mitigation activities, we map the problem of fake news mitigation into the reinforcement learning framework. We develop a policy iteration method unique to the multivariate networked point process, with the goal of optimizing the actions for maximal reward under budget constraints. Our method shows promising performance in real-time intervention experiments on a Twitter network to mitigate a surrogate fake news campaign, and outperforms alternatives on synthetic datasets.
Author Information
Mehrdad Farajtabar (Georgia Tech)
Jiachen Yang (Georgia Institute of Technology)
Xiaojing Ye (Georgia State University)
Huan Xu (Georgia Tech)
Rakshit Trivedi (Georgia Institute of Technology)
Elias Khalil (Georgia Tech)
Shuang Li (Georgia Tech)
Le Song (Georgia Institute of Technology)
Hongyuan Zha (Georgia Institute of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Talk: Fake News Mitigation via Point Process Based Intervention »
Mon. Aug 7th 04:42 -- 05:00 AM Room C4.5
More from the Same Authors
-
2021 Poster: Learning Stochastic Behaviour from Aggregate Data »
Shaojun Ma · Shu Liu · Hongyuan Zha · Haomin Zhou -
2021 Spotlight: Learning Stochastic Behaviour from Aggregate Data »
Shaojun Ma · Shu Liu · Hongyuan Zha · Haomin Zhou -
2021 Town Hall: Town Hall »
John Langford · Marina Meila · Tong Zhang · Le Song · Stefanie Jegelka · Csaba Szepesvari -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 : Opening Remarks: Jian Tang & Le Song »
Jian Tang · Le Song -
2020 Poster: Transformer Hawkes Process »
Simiao Zuo · Haoming Jiang · Zichong Li · Tuo Zhao · Hongyuan Zha -
2020 Poster: GraphOpt: Learning Optimization Models of Graph Formation »
Rakshit Trivedi · Jiachen Yang · Hongyuan Zha -
2020 Poster: Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search »
Binghong Chen · Chengtao Li · Hanjun Dai · Le Song -
2020 Poster: Temporal Logic Point Processes »
Shuang Li · Lu Wang · Ruizhi Zhang · xiaofu Chang · Xuqin Liu · Yao Xie · Yuan Qi · Le Song -
2020 Poster: Learning To Stop While Learning To Predict »
Xinshi Chen · Hanjun Dai · Yu Li · Xin Gao · Le Song -
2019 Poster: Gromov-Wasserstein Learning for Graph Matching and Node Embedding »
Hongteng Xu · Dixin Luo · Hongyuan Zha · Lawrence Carin -
2019 Poster: Competing Against Nash Equilibria in Adversarially Changing Zero-Sum Games »
Adrian Rivera Cardoso · Jacob Abernethy · He Wang · Huan Xu -
2019 Poster: On Scalable and Efficient Computation of Large Scale Optimal Transport »
Yujia Xie · Minshuo Chen · Haoming Jiang · Tuo Zhao · Hongyuan Zha -
2019 Oral: Gromov-Wasserstein Learning for Graph Matching and Node Embedding »
Hongteng Xu · Dixin Luo · Hongyuan Zha · Lawrence Carin -
2019 Oral: On Scalable and Efficient Computation of Large Scale Optimal Transport »
Yujia Xie · Minshuo Chen · Haoming Jiang · Tuo Zhao · Hongyuan Zha -
2019 Oral: Competing Against Nash Equilibria in Adversarially Changing Zero-Sum Games »
Adrian Rivera Cardoso · Jacob Abernethy · He Wang · Huan Xu -
2019 Poster: Nonlinear Distributional Gradient Temporal-Difference Learning »
chao qu · Shie Mannor · Huan Xu -
2019 Poster: Particle Flow Bayes' Rule »
Xinshi Chen · Hanjun Dai · Le Song -
2019 Poster: Generative Adversarial User Model for Reinforcement Learning Based Recommendation System »
Xinshi Chen · Shuang Li · Hui Li · Shaohua Jiang · Yuan Qi · Le Song -
2019 Oral: Generative Adversarial User Model for Reinforcement Learning Based Recommendation System »
Xinshi Chen · Shuang Li · Hui Li · Shaohua Jiang · Yuan Qi · Le Song -
2019 Oral: Particle Flow Bayes' Rule »
Xinshi Chen · Hanjun Dai · Le Song -
2019 Oral: Nonlinear Distributional Gradient Temporal-Difference Learning »
chao qu · Shie Mannor · Huan Xu -
2018 Poster: Learning Registered Point Processes from Idiosyncratic Observations »
Hongteng Xu · Lawrence Carin · Hongyuan Zha -
2018 Oral: Learning Registered Point Processes from Idiosyncratic Observations »
Hongteng Xu · Lawrence Carin · Hongyuan Zha -
2018 Poster: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Poster: Towards Black-box Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Xingguo Li · Zhen Liu · James Rehg · Le Song -
2018 Poster: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Oral: Towards Black-box Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Xingguo Li · Zhen Liu · James Rehg · Le Song -
2018 Oral: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Oral: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Poster: Non-convex Conditional Gradient Sliding »
chao qu · Yan Li · Huan Xu -
2018 Poster: Learning to Explain: An Information-Theoretic Perspective on Model Interpretation »
Jianbo Chen · Le Song · Martin Wainwright · Michael Jordan -
2018 Poster: More Robust Doubly Robust Off-policy Evaluation »
Mehrdad Farajtabar · Yinlam Chow · Mohammad Ghavamzadeh -
2018 Poster: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Poster: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Oral: Non-convex Conditional Gradient Sliding »
chao qu · Yan Li · Huan Xu -
2018 Oral: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: More Robust Doubly Robust Off-policy Evaluation »
Mehrdad Farajtabar · Yinlam Chow · Mohammad Ghavamzadeh -
2018 Oral: Learning to Explain: An Information-Theoretic Perspective on Model Interpretation »
Jianbo Chen · Le Song · Martin Wainwright · Michael Jordan -
2017 Poster: Learning Hawkes Processes from Short Doubly-Censored Event Sequences »
Hongteng Xu · Dixin Luo · Hongyuan Zha -
2017 Poster: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Poster: Variational Policy for Guiding Point Processes »
Yichen Wang · Grady Williams · Evangelos Theodorou · Le Song -
2017 Talk: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Talk: Variational Policy for Guiding Point Processes »
Yichen Wang · Grady Williams · Evangelos Theodorou · Le Song -
2017 Talk: Learning Hawkes Processes from Short Doubly-Censored Event Sequences »
Hongteng Xu · Dixin Luo · Hongyuan Zha -
2017 Poster: Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs »
Rakshit Trivedi · Hanjun Dai · Yichen Wang · Le Song -
2017 Talk: Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs »
Rakshit Trivedi · Hanjun Dai · Yichen Wang · Le Song -
2017 Poster: Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Ahmad Humayun · Charlene Tay · Chen Yu · Linda Smith · James Rehg · Le Song -
2017 Talk: Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Ahmad Humayun · Charlene Tay · Chen Yu · Linda Smith · James Rehg · Le Song