Timezone: »
Recurrent neural networks, such as long-short term memory (LSTM) networks, are powerful tools for modeling sequential data like user browsing history (Tan et al., 2016; Korpusik et al., 2016) or natural language text (Mikolov et al., 2010). However, to generalize across different user types, LSTMs require a large number of parameters, notwithstanding the simplicity of the underlying dynamics, rendering it uninterpretable, which is highly undesirable in user modeling. The increase in complexity and parameters arises due to a large action space in which many of the actions have similar intent or topic. In this paper, we introduce Latent LSTM Allocation (LLA) for user modeling combining hierarchical Bayesian models with LSTMs. In LLA, each user is modeled as a sequence of actions, and the model jointly groups actions into topics and learns the temporal dynamics over the topic sequence, instead of action space directly. This leads to a model that is highly interpretable, concise, and can capture intricate dynamics. We present an efficient Stochastic EM inference algorithm for our model that scales to millions of users/documents. Our experimental evaluations show that the proposed model compares favorably with several state-of-the-art baselines.
Author Information
Manzil Zaheer (Carnegie Mellon University)
Amr Ahmed (Google)
Alex Smola (Amazon)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Talk: Latent LSTM Allocation: Joint clustering and non-linear dynamic modeling of sequence data »
Tue. Aug 8th 06:42 -- 07:00 AM Room Parkside 1
More from the Same Authors
-
2021 : Multimodal AutoML on Structured Tables with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alex Smola -
2021 : Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alex Smola -
2022 : Adaptive Interest for Emphatic Reinforcement Learning »
Martin Klissarov · Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Taesup Kim · Alex Smola -
2023 Poster: RLSbench: Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · University of California James Sharpnack · Alex Smola · Sivaraman Balakrishnan · Zachary Lipton -
2022 : Discussion Panel »
Percy Liang · Léon Bottou · Jayashree Kalpathy-Cramer · Alex Smola -
2022 Poster: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2022 Oral: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2020 : Panel Discussion »
Neil Lawrence · Mihaela van der Schaar · Alex Smola · Valerio Perrone · Jack Parker-Holder · Zhengying Liu -
2020 : "AutoGluon and Distillation" by Alex Smola »
Alex Smola -
2019 Poster: Deep Factors for Forecasting »
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski -
2019 Oral: Deep Factors for Forecasting »
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski -
2019 Tutorial: A Tutorial on Attention in Deep Learning »
Alex Smola · Aston Zhang -
2018 Poster: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Oral: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Poster: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2017 Poster: Canopy --- Fast Sampling with Cover Trees »
Manzil Zaheer · Satwik Kottur · Amr Ahmed · Jose Moura · Alex Smola -
2017 Talk: Canopy --- Fast Sampling with Cover Trees »
Manzil Zaheer · Satwik Kottur · Amr Ahmed · Jose Moura · Alex Smola -
2017 Tutorial: Distributed Deep Learning with MxNet Gluon »
Alex Smola · Aran Khanna