Timezone: »
The past decade has seen a significant interest in learning tractable probabilistic representations. Arithmetic circuits (ACs) were among the first proposed tractable representations, with some subsequent representations being instances of ACs with weaker or stronger properties. In this paper, we provide a formal basis under which variants on ACs can be compared, and where the precise roles and semantics of their various properties can be made more transparent. This allows us to place some recent developments on ACs in a clearer perspective and to also derive new results for ACs. This includes an exponential separation between ACs with and without determinism; completeness and incompleteness results; and tractability results (or lack thereof) when computing most probable explanations (MPEs).
Author Information
Arthur Choi (UCLA)
Adnan Darwiche (UCLA)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Talk: On Relaxing Determinism in Arithmetic Circuits »
Mon Aug 7th 06:42 -- 07:00 AM Room C4.9& C4.10
More from the Same Authors
-
2019 Poster: Conditional Independence in Testing Bayesian Networks »
Yujia Shen · Haiying Huang · Arthur Choi · Adnan Darwiche -
2019 Oral: Conditional Independence in Testing Bayesian Networks »
Yujia Shen · Haiying Huang · Arthur Choi · Adnan Darwiche