Timezone: »
Poster
Active Heteroscedastic Regression
Kamalika Chaudhuri · Prateek Jain · Nagarajan Natarajan
An active learner is given a model class $\Theta$, a large sample of unlabeled data drawn from an underlying distribution and access to a labeling oracle which can provide a label for any of the unlabeled instances. The goal of the learner is to find a model $\theta \in \Theta$ that fits the data to a given accuracy while making as few label queries to the oracle as possible. In this work, we consider a theoretical analysis of the label requirement of active learning for regression under a heteroscedastic noise model.
Previous work has looked at active regression either with no model mismatch~\cite{chaudhuri2015convergence} or with arbitrary model mismatch~\cite{sabato2014active}. In the first case, active learning provided no improvement even in the simple case where the unlabeled examples were drawn from Gaussians. In the second case, under arbitrary model mismatch, the algorithm either required a very high running time or a large number of labels. We provide bounds on the convergence rates of active and passive learning for heteroscedastic regression, where the noise depends on the instance. Our results illustrate that just like in binary classification, some partial knowledge of the nature of the noise can lead to significant gains in the label requirement of active learning.
Author Information
Kamalika Chaudhuri (University of California at San Diego)
Prateek Jain (Microsoft Research)
Nagarajan Natarajan (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Talk: Active Heteroscedastic Regression »
Mon. Aug 7th 07:51 -- 08:09 AM Room C4.8
More from the Same Authors
-
2021 : Understanding Instance-based Interpretability of Variational Auto-Encoders »
· Zhifeng Kong · Kamalika Chaudhuri -
2021 : Privacy Amplification by Bernoulli Sampling »
Jacob Imola · Kamalika Chaudhuri -
2021 : A Shuffling Framework For Local Differential Privacy »
Casey M Meehan · Amrita Roy Chowdhury · Kamalika Chaudhuri · Somesh Jha -
2021 : Privacy Amplification by Subsampling in Time Domain »
Tatsuki Koga · Casey M Meehan · Kamalika Chaudhuri -
2022 : Understanding Rare Spurious Correlations in Neural Networks »
Yao-Yuan Yang · Chi-Ning Chou · Kamalika Chaudhuri -
2023 : Machine Learning with Feature Differential Privacy »
Saeed Mahloujifar · Chuan Guo · G. Edward Suh · Kamalika Chaudhuri -
2023 : Panel Discussion »
Peter Kairouz · Song Han · Kamalika Chaudhuri · Florian Tramer -
2023 : Kamalika Chaudhuri »
Kamalika Chaudhuri -
2023 Poster: Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design »
Chuan Guo · Kamalika Chaudhuri · Pierre Stock · Michael Rabbat -
2023 Oral: Why does Throwing Away Data Improve Worst-Group Error? »
Kamalika Chaudhuri · Kartik Ahuja · Martin Arjovsky · David Lopez-Paz -
2023 Poster: Data-Copying in Generative Models: A Formal Framework »
Robi Bhattacharjee · Sanjoy Dasgupta · Kamalika Chaudhuri -
2023 Poster: A Two-Stage Active Learning Algorithm for k-Nearest Neighbors »
Nicholas Rittler · Kamalika Chaudhuri -
2023 Poster: Why does Throwing Away Data Improve Worst-Group Error? »
Kamalika Chaudhuri · Kartik Ahuja · Martin Arjovsky · David Lopez-Paz -
2022 Poster: Thompson Sampling for Robust Transfer in Multi-Task Bandits »
Zhi Wang · Chicheng Zhang · Kamalika Chaudhuri -
2022 Spotlight: Thompson Sampling for Robust Transfer in Multi-Task Bandits »
Zhi Wang · Chicheng Zhang · Kamalika Chaudhuri -
2022 Poster: Bounding Training Data Reconstruction in Private (Deep) Learning »
Chuan Guo · Brian Karrer · Kamalika Chaudhuri · Laurens van der Maaten -
2022 Oral: Bounding Training Data Reconstruction in Private (Deep) Learning »
Chuan Guo · Brian Karrer · Kamalika Chaudhuri · Laurens van der Maaten -
2021 : Discussion Panel #2 »
Bo Li · Nicholas Carlini · Andrzej Banburski · Kamalika Chaudhuri · Will Xiao · Cihang Xie -
2021 : Invited Talk #9 »
Kamalika Chaudhuri -
2021 : Invited Talk: Kamalika Chaudhuri »
Kamalika Chaudhuri -
2021 : Invited Talk: Kamalika Chaudhuri »
Kamalika Chaudhuri -
2021 : Live Panel Discussion »
Thomas Dietterich · Chelsea Finn · Kamalika Chaudhuri · Yarin Gal · Uri Shalit -
2021 Poster: Sample Complexity of Robust Linear Classification on Separated Data »
Robi Bhattacharjee · Somesh Jha · Kamalika Chaudhuri -
2021 Spotlight: Sample Complexity of Robust Linear Classification on Separated Data »
Robi Bhattacharjee · Somesh Jha · Kamalika Chaudhuri -
2021 Poster: Connecting Interpretability and Robustness in Decision Trees through Separation »
Michal Moshkovitz · Yao-Yuan Yang · Kamalika Chaudhuri -
2021 Spotlight: Connecting Interpretability and Robustness in Decision Trees through Separation »
Michal Moshkovitz · Yao-Yuan Yang · Kamalika Chaudhuri -
2020 : Discussion Panel »
Krzysztof Dembczynski · Prateek Jain · Alina Beygelzimer · Inderjit Dhillon · Anna Choromanska · Maryam Majzoubi · Yashoteja Prabhu · John Langford -
2020 Poster: Soft Threshold Weight Reparameterization for Learnable Sparsity »
Aditya Kusupati · Vivek Ramanujan · Raghav Somani · Mitchell Wortsman · Prateek Jain · Sham Kakade · Ali Farhadi -
2020 Poster: Optimization and Analysis of the pAp@k Metric for Recommender Systems »
Gaurush Hiranandani · Warut Vijitbenjaronk · Sanmi Koyejo · Prateek Jain -
2020 Poster: When are Non-Parametric Methods Robust? »
Robi Bhattacharjee · Kamalika Chaudhuri -
2020 Poster: DROCC: Deep Robust One-Class Classification »
Sachin Goyal · Aditi Raghunathan · Moksh Jain · Harsha Vardhan Simhadri · Prateek Jain -
2019 Poster: SGD without Replacement: Sharper Rates for General Smooth Convex Functions »
Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2019 Oral: SGD without Replacement: Sharper Rates for General Smooth Convex Functions »
Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2019 Talk: Opening Remarks »
Kamalika Chaudhuri · Ruslan Salakhutdinov -
2018 Poster: Active Learning with Logged Data »
Songbai Yan · Kamalika Chaudhuri · Tara Javidi -
2018 Poster: Analyzing the Robustness of Nearest Neighbors to Adversarial Examples »
Yizhen Wang · Somesh Jha · Kamalika Chaudhuri -
2018 Oral: Active Learning with Logged Data »
Songbai Yan · Kamalika Chaudhuri · Tara Javidi -
2018 Oral: Analyzing the Robustness of Nearest Neighbors to Adversarial Examples »
Yizhen Wang · Somesh Jha · Kamalika Chaudhuri -
2018 Poster: Differentially Private Matrix Completion Revisited »
Prateek Jain · Om Dipakbhai Thakkar · Abhradeep Thakurta -
2018 Oral: Differentially Private Matrix Completion Revisited »
Prateek Jain · Om Dipakbhai Thakkar · Abhradeep Thakurta -
2017 Workshop: Picky Learners: Choosing Alternative Ways to Process Data. »
Corinna Cortes · Kamalika Chaudhuri · Giulia DeSalvo · Ningshan Zhang · Chicheng Zhang -
2017 Workshop: ML on a budget: IoT, Mobile and other tiny-ML applications »
Manik Varma · Venkatesh Saligrama · Prateek Jain -
2017 Poster: ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices »
Chirag Gupta · ARUN SUGGALA · Ankit Goyal · Saurabh Goyal · Ashish Kumar · Bhargavi Paranjape · Harsha Vardhan Simhadri · Raghavendra Udupa · Manik Varma · Prateek Jain -
2017 Poster: Consistency Analysis for Binary Classification Revisited »
Krzysztof Dembczynski · Wojciech Kotlowski · Sanmi Koyejo · Nagarajan Natarajan -
2017 Talk: ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices »
Chirag Gupta · ARUN SUGGALA · Ankit Goyal · Saurabh Goyal · Ashish Kumar · Bhargavi Paranjape · Harsha Vardhan Simhadri · Raghavendra Udupa · Manik Varma · Prateek Jain -
2017 Talk: Consistency Analysis for Binary Classification Revisited »
Krzysztof Dembczynski · Wojciech Kotlowski · Sanmi Koyejo · Nagarajan Natarajan -
2017 Poster: Recovery Guarantees for One-hidden-layer Neural Networks »
Kai Zhong · Zhao Song · Prateek Jain · Peter Bartlett · Inderjit Dhillon -
2017 Poster: Nearly Optimal Robust Matrix Completion »
Yeshwanth Cherapanamjeri · Prateek Jain · Kartik Gupta -
2017 Talk: Nearly Optimal Robust Matrix Completion »
Yeshwanth Cherapanamjeri · Prateek Jain · Kartik Gupta -
2017 Talk: Recovery Guarantees for One-hidden-layer Neural Networks »
Kai Zhong · Zhao Song · Prateek Jain · Peter Bartlett · Inderjit Dhillon