Timezone: »

Tensor-Train Recurrent Neural Networks for Video Classification
Yinchong Yang · Denis Krompass · Volker Tresp

Tue Aug 08 01:30 AM -- 05:00 AM (PDT) @ Gallery #122

The Recurrent Neural Networks and their variants have shown promising performances in sequence modeling tasks such as Natural Language Processing. These models, however, turn out to be impractical and difficult to train when exposed to very high-dimensional inputs due to the large input-to-hidden weight matrix. This may have prevented RNNs' large-scale application in tasks that involve very high input dimensions such as video modeling; current approaches reduce the input dimensions using various feature extractors. To address this challenge, we propose a new, more general and efficient approach by factorizing the input-to-hidden weight matrix using Tensor-Train decomposition which is trained simultaneously with the weights themselves. We test our model on classification tasks using multiple real-world video datasets and achieve competitive performances with state-of-the-art models, even though our model architecture is orders of magnitude less complex. We believe that the proposed approach provides a novel and fundamental building block for modeling high-dimensional sequential data with RNN architectures and opens up many possibilities to transfer the expressive and advanced architectures from other domains such as NLP to modeling high-dimensional sequential data.

Author Information

Yinchong Yang (Ludwig-Maximilians-Universität München, Siemens AG)
Denis Krompass (Siemens AG)
Volker Tresp (University of Munich)

Volker Tresp received a Diploma degree from the University of Goettingen, Germany, in 1984 and the M.Sc. and Ph.D. degrees from Yale University, New Haven, CT, in 1986 and 1989 respectively. Since 1989 he is the head of various research teams in machine learning at Siemens, Research and Technology. He filed more than 70 patent applications and was inventor of the year of Siemens in 1996. He has published more than 150 scientific articles and administered over 20 Ph.D. theses. The company Panoratio is a spin-off out of his team. His research focus in recent years has been „Machine Learning in Information Networks“ for modelling Knowledge Graphs, medical decision processes and sensor networks. He is the coordinator of one of the first nationally funded Big Data projects for the realization of „Precision Medicine“. Since 2011 he is also a Professor at the Ludwig Maximilian University of Munich where he teaches an annual course on Machine Learning.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors