Timezone: »
Domain adaptation is an important open problem in deep reinforcement learning (RL). In many scenarios of interest data is hard to obtain, so agents may learn a source policy in a setting where data is readily available, with the hope that it generalises well to the target domain. We propose a new multi-stage RL agent, DARLA (DisentAngled Representation Learning Agent), which learns to see before learning to act. DARLA’s vision is based on learning a disentangled representation of the observed environment. Once DARLA can see, it is able to acquire source policies that are robust to many domain shifts - even with no access to the target domain. DARLA significantly outperforms conventional baselines in zero-shot domain adaptation scenarios, an effect that holds across a variety of RL environments (Jaco arm, DeepMind Lab) and base RL algorithms (DQN, A3C and EC).
Author Information
Irina Higgins (DeepMind)

Irina Higgins is a research scientist at DeepMind, where she works in the Froniers team. Her work aims to bring together insights from the fields of neuroscience and physics to advance general artificial intelligence through improved representation learning. Before joining DeepMind, Irina was a British Psychological Society Undergraduate Award winner for her achievements as an undergraduate student in Experimental Psychology at Westminster University, followed by a DPhil at the Oxford Centre for Computational Neuroscience and Artificial Intelligence, where she focused on understanding the computational principles underlying speech processing in the auditory brain. During her DPhil, Irina also worked on developing poker AI, applying machine learning in the finance sector, and working on speech recognition at Google Research.
Arka Pal (DeepMind)
Andrei A Rusu (DeepMind)
Loic Matthey (DeepMind)
Christopher Burgess (DeepMind)
Alexander Pritzel (Deepmind)
Matthew Botvinick (DeepMind)
Charles Blundell (DeepMind)
Alexander Lerchner (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Talk: DARLA: Improving Zero-Shot Transfer in Reinforcement Learning »
Mon. Aug 7th 06:42 -- 07:00 AM Room C4.5
More from the Same Authors
-
2021 : PonderNet: Learning to Ponder »
Andrea Banino · Jan Balaguer · Charles Blundell -
2021 : Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning »
Víctor Campos · Pablo Sprechmann · Steven Hansen · Andre Barreto · Steven Kapturowski · Alex Vitvitskyi · Adrià Puigdomenech Badia · Charles Blundell -
2021 : CoBERL: Contrastive BERT for Reinforcement Learning »
Andrea Banino · Adrià Puigdomenech Badia · Jacob C Walker · Tim Scholtes · Jovana Mitrovic · Charles Blundell -
2022 : MultiScale MeshGraphNets »
Meire Fortunato · Tobias Pfaff · Peter Wirnsberger · Alexander Pritzel · Peter Battaglia -
2022 : Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet? »
Nenad Tomasev · Ioana Bica · Brian McWilliams · Lars Buesing · Razvan Pascanu · Charles Blundell · Jovana Mitrovic -
2023 Poster: Neural Algorithmic Reasoning with Causal Regularisation »
Beatrice Bevilacqua · Kyriacos Nikiforou · Borja Ibarz · Ioana Bica · Michela Paganini · Charles Blundell · Jovana Mitrovic · Petar Veličković -
2022 Poster: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Poster: General-purpose, long-context autoregressive modeling with Perceiver AR »
Curtis Hawthorne · Drew Jaegle · Cătălina Cangea · Sebastian Borgeaud · Charlie Nash · Mateusz Malinowski · Sander Dieleman · Oriol Vinyals · Matthew Botvinick · Ian Simon · Hannah Sheahan · Neil Zeghidour · Jean-Baptiste Alayrac · Joao Carreira · Jesse Engel -
2022 Spotlight: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Spotlight: General-purpose, long-context autoregressive modeling with Perceiver AR »
Curtis Hawthorne · Drew Jaegle · Cătălina Cangea · Sebastian Borgeaud · Charlie Nash · Mateusz Malinowski · Sander Dieleman · Oriol Vinyals · Matthew Botvinick · Ian Simon · Hannah Sheahan · Neil Zeghidour · Jean-Baptiste Alayrac · Joao Carreira · Jesse Engel -
2022 Poster: The CLRS Algorithmic Reasoning Benchmark »
Petar Veličković · Adrià Puigdomenech Badia · David Budden · Razvan Pascanu · Andrea Banino · Misha Dashevskiy · Raia Hadsell · Charles Blundell -
2022 Spotlight: The CLRS Algorithmic Reasoning Benchmark »
Petar Veličković · Adrià Puigdomenech Badia · David Budden · Razvan Pascanu · Andrea Banino · Misha Dashevskiy · Raia Hadsell · Charles Blundell -
2022 Poster: Hindering Adversarial Attacks with Implicit Neural Representations »
Andrei A Rusu · Dan Andrei Calian · Sven Gowal · Raia Hadsell -
2022 Spotlight: Hindering Adversarial Attacks with Implicit Neural Representations »
Andrei A Rusu · Dan Andrei Calian · Sven Gowal · Raia Hadsell -
2021 : RL Foundation Panel »
Matthew Botvinick · Thomas Dietterich · Leslie Kaelbling · John Langford · Warrren B Powell · Csaba Szepesvari · Lihong Li · Yuxi Li -
2021 Poster: Emphatic Algorithms for Deep Reinforcement Learning »
Ray Jiang · Tom Zahavy · Zhongwen Xu · Adam White · Matteo Hessel · Charles Blundell · Hado van Hasselt -
2021 Spotlight: Emphatic Algorithms for Deep Reinforcement Learning »
Ray Jiang · Tom Zahavy · Zhongwen Xu · Adam White · Matteo Hessel · Charles Blundell · Hado van Hasselt -
2020 Poster: Agent57: Outperforming the Atari Human Benchmark »
Adrià Puigdomenech Badia · Bilal Piot · Steven Kapturowski · Pablo Sprechmann · Oleksandr Vitvitskyi · Zhaohan Guo · Charles Blundell -
2020 Poster: Stabilizing Transformers for Reinforcement Learning »
Emilio Parisotto · Francis Song · Jack Rae · Razvan Pascanu · Caglar Gulcehre · Siddhant Jayakumar · Max Jaderberg · Raphael Lopez Kaufman · Aidan Clark · Seb Noury · Matthew Botvinick · Nicolas Heess · Raia Hadsell -
2020 Tutorial: Representation Learning Without Labels »
S. M. Ali Eslami · Irina Higgins · Danilo J. Rezende -
2019 Workshop: Workshop on Multi-Task and Lifelong Reinforcement Learning »
Sarath Chandar · Shagun Sodhani · Khimya Khetarpal · Tom Zahavy · Daniel J. Mankowitz · Shie Mannor · Balaraman Ravindran · Doina Precup · Chelsea Finn · Abhishek Gupta · Amy Zhang · Kyunghyun Cho · Andrei A Rusu · Facebook Rob Fergus -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Poster spotlights »
Roman Novak · Frederic Dreyer · Siavash Golkar · Irina Higgins · Joe Antognini · Ryo Karakida · Rohan Ghosh -
2019 Poster: Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Francis Song · Edward Hughes · Neil Burch · Iain Dunning · Shimon Whiteson · Matthew Botvinick · Michael Bowling -
2019 Poster: Multi-Object Representation Learning with Iterative Variational Inference »
Klaus Greff · Raphael Lopez Kaufman · Rishabh Kabra · Nicholas Watters · Christopher Burgess · Daniel Zoran · Loic Matthey · Matthew Botvinick · Alexander Lerchner -
2019 Oral: Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Francis Song · Edward Hughes · Neil Burch · Iain Dunning · Shimon Whiteson · Matthew Botvinick · Michael Bowling -
2019 Oral: Multi-Object Representation Learning with Iterative Variational Inference »
Klaus Greff · Raphael Lopez Kaufman · Rishabh Kabra · Nicholas Watters · Christopher Burgess · Daniel Zoran · Loic Matthey · Matthew Botvinick · Alexander Lerchner -
2018 Poster: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Poster: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2018 Poster: Been There, Done That: Meta-Learning with Episodic Recall »
Samuel Ritter · Jane Wang · Zeb Kurth-Nelson · Siddhant Jayakumar · Charles Blundell · Razvan Pascanu · Matthew Botvinick -
2018 Oral: Been There, Done That: Meta-Learning with Episodic Recall »
Samuel Ritter · Jane Wang · Zeb Kurth-Nelson · Siddhant Jayakumar · Charles Blundell · Razvan Pascanu · Matthew Botvinick -
2018 Oral: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2018 Oral: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2017 : Lifelong Learning - Panel Discussion »
Sergey Levine · Joelle Pineau · Balaraman Ravindran · Andrei A Rusu -
2017 : Andrei Rusu: Sequential Learning in Complex Environments »
Andrei A Rusu -
2017 Poster: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · Adrià Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Talk: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · Adrià Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Poster: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Samuel Ritter · David GT Barrett · Adam Santoro · Matthew Botvinick -
2017 Poster: Learning to Learn without Gradient Descent by Gradient Descent »
Yutian Chen · Matthew Hoffman · Sergio Gómez Colmenarejo · Misha Denil · Timothy Lillicrap · Matthew Botvinick · Nando de Freitas -
2017 Talk: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Samuel Ritter · David GT Barrett · Adam Santoro · Matthew Botvinick -
2017 Talk: Learning to Learn without Gradient Descent by Gradient Descent »
Yutian Chen · Matthew Hoffman · Sergio Gómez Colmenarejo · Misha Denil · Timothy Lillicrap · Matthew Botvinick · Nando de Freitas