Poster
Multi-task Learning with Labeled and Unlabeled Tasks
Anastasia Pentina · Christoph H. Lampert

Mon Aug 7th 06:30 -- 10:00 PM @ Gallery #139

In multi-task learning, a learner is given a collection of prediction tasks and needs to solve all of them. In contrast to previous work, which required that annotated training data must be available for all tasks, we consider a new setting, in which for some tasks, potentially most of them, only unlabeled training data is provided. Consequently, to solve all tasks, information must be transferred between tasks with labels and tasks without labels. Focusing on an instance-based transfer method we analyze two variants of this setting: when the set of labeled tasks is fixed, and when it can be actively selected by the learner. We state and prove a generalization bound that covers both scenarios and derive from it an algorithm for making the choice of labeled tasks (in the active case) and for transferring information between the tasks in a principled way. We also illustrate the effectiveness of the algorithm on synthetic and real data.

Author Information

Anastasia Pentina (IST Austria)
Christoph H. Lampert (IST Austria)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors