Timezone: »

 
Poster
Differentially Private Submodular Maximization: Data Summarization in Disguise
Marko Mitrovic · Mark Bun · Andreas Krause · Amin Karbasi

Wed Aug 09 01:30 AM -- 05:00 AM (PDT) @ Gallery #42

Many data summarization applications are captured by the general framework of submodular maximization. As a consequence, a wide range of efficient approximation algorithms have been developed. However, when such applications involve sensitive data about individuals, their privacy concerns are not automatically addressed. To remedy this problem, we propose a general and systematic study of differentially private submodular maximization. We present privacy-preserving algorithms for both monotone and non-monotone submodular maximization under cardinality, matroid, and p-extendible system constraints, with guarantees that are competitive with optimal. Along the way, we analyze a new algorithm for non-monotone submodular maximization, which is the first (even non-privately) to achieve a constant approximation ratio while running in linear time. We additionally provide two concrete experiments to validate the efficacy of these algorithms.

Author Information

Marko Mitrovic (Yale University)
Mark Bun (Princeton University)
Andreas Krause (ETH Zurich)

Andreas Krause is a Professor of Computer Science at ETH Zurich, where he leads the Learning & Adaptive Systems Group. He also serves as Academic Co-Director of the Swiss Data Science Center. Before that he was an Assistant Professor of Computer Science at Caltech. He received his Ph.D. in Computer Science from Carnegie Mellon University (2008) and his Diplom in Computer Science and Mathematics from the Technical University of Munich, Germany (2004). He is a Microsoft Research Faculty Fellow and a Kavli Frontiers Fellow of the US National Academy of Sciences. He received ERC Starting Investigator and ERC Consolidator grants, the Deutscher Mustererkennungspreis, an NSF CAREER award, the Okawa Foundation Research Grant recognizing top young researchers in telecommunications as well as the ETH Golden Owl teaching award. His research on machine learning and adaptive systems has received awards at several premier conferences and journals, including the ACM SIGKDD Test of Time award 2019 and the ICML Test of Time award 2020. Andreas Krause served as Program Co-Chair for ICML 2018, and is regularly serving as Area Chair or Senior Program Committee member for ICML, NeurIPS, AAAI and IJCAI, and as Action Editor for the Journal of Machine Learning Research.

Amin Karbasi (Yale)
Amin Karbasi

Amin Karbasi is currently an assistant professor of Electrical Engineering, Computer Science, and Statistics at Yale University. He has been the recipient of the National Science Foundation (NSF) Career Award 2019, Office of Naval Research (ONR) Young Investigator Award 2019, Air Force Office of Scientific Research (AFOSR) Young Investigator Award 2018, DARPA Young Faculty Award 2016, National Academy of Engineering Grainger Award 2017, Amazon Research Award 2018, Google Faculty Research Award 2016, Microsoft Azure Research Award 2016, Simons Research Fellowship 2017, and ETH Research Fellowship 2013. His work has also been recognized with a number of paper awards, including Medical Image Computing and Computer Assisted Interventions Conference (MICCAI) 2017, International Conference on Artificial Intelligence and Statistics (AISTAT) 2015, IEEE ComSoc Data Storage 2013, International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2011, ACM SIGMETRICS 2010, and IEEE International Symposium on Information Theory (ISIT) 2010 (runner-up). His Ph.D. thesis received the Patrick Denantes Memorial Prize 2013 from the School of Computer and Communication Sciences at EPFL, Switzerland.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors