Poster
Modular Multitask Reinforcement Learning with Policy Sketches
Jacob Andreas · Dan Klein · Sergey Levine

Tue Aug 8th 06:30 -- 10:00 PM @ Gallery #27

We describe a framework for multitask deep reinforcement learning guided by policy sketches. Sketches annotate tasks with sequences of named subtasks, providing information about high-level structural relationships among tasks but not how to implement them---specifically not providing the detailed guidance used by much previous work on learning policy abstractions for RL (e.g. intermediate rewards, subtask completion signals, or intrinsic motivations). To learn from sketches, we present a model that associates every subtask with a modular subpolicy, and jointly maximizes reward over full task-specific policies by tying parameters across shared subpolicies. Optimization is accomplished via a decoupled actor--critic training objective that facilitates learning common behaviors from multiple dissimilar reward functions. We evaluate the effectiveness of our approach in three environments featuring both discrete and continuous control, and with sparse rewards that can be obtained only after completing a number of high-level subgoals. Experiments show that using our approach to learn policies guided by sketches gives better performance than existing techniques for learning task-specific or shared policies, while naturally inducing a library of interpretable primitive behaviors that can be recombined to rapidly adapt to new tasks.

Author Information

Jacob Andreas (UC Berkeley)
Dan Klein (UC Berkeley)
Sergey Levine (Berkeley)
Sergey Levine

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as computer vision and graphics. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors