Poster
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn · Pieter Abbeel · Sergey Levine

Mon Aug 7th 06:30 -- 10:00 PM @ Gallery #112

We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.

Author Information

Chelsea Finn (UC Berkeley)
Chelsea Finn

Chelsea Finn is a research scientist at Google Brain and a post-doctoral scholar at UC Berkeley. In September 2019, she will be joining Stanford's computer science department as an assistant professor. Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. To this end, Finn has developed deep learning algorithms for concurrently learning visual perception and control in robotic manipulation skills, inverse reinforcement methods for scalable acquisition of nonlinear reward functions, and meta-learning algorithms that can enable fast, few-shot adaptation in both visual perception and deep reinforcement learning. Finn received her Bachelors degree in EECS at MIT, and her PhD in CS at UC Berkeley. Her research has been recognized through an NSF graduate fellowship, a Facebook fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg.

Pieter Abbeel (OpenAI / UC Berkeley)
Sergey Levine (Berkeley)
Sergey Levine

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as computer vision and graphics. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors