Timezone: »
Poster
Consistent On-Line Off-Policy Evaluation
Assaf Hallak · Shie Mannor
The problem of on-line off-policy evaluation (OPE) has been actively studied in the last decade due to its importance both as a stand-alone problem and as a module in a policy improvement scheme. However, most Temporal Difference (TD) based solutions ignore the discrepancy between the stationary distribution of the behavior and target policies and its effect on the convergence limit when function approximation is applied. In this paper we propose the Consistent Off-Policy Temporal Difference (COP-TD($\lambda$, $\beta$)) algorithm that addresses this issue and reduces this bias at some computational expense. We show that COP-TD($\lambda$, $\beta$) can be designed to converge to the same value that would have been obtained by using on-policy TD($\lambda$) with the target policy. Subsequently, the proposed scheme leads to a related and promising heuristic we call log-COP-TD($\lambda$, $\beta$). Both algorithms have favorable empirical results to the current state of the art on-line OPE algorithms. Finally, our formulation sheds some new light on the recently proposed Emphatic TD learning.
Author Information
Assaf Hallak (Technion)
Shie Mannor (Technion)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Talk: Consistent On-Line Off-Policy Evaluation »
Tue. Aug 8th 01:24 -- 01:42 AM Room C4.5
More from the Same Authors
-
2023 Poster: Representation-Driven Reinforcement Learning »
Ofir Nabati · Guy Tennenholtz · Shie Mannor -
2023 Poster: Learning to Initiate and Reason in Event-Driven Cascading Processes »
Yuval Atzmon · Eli Meirom · Shie Mannor · Gal Chechik -
2023 Poster: PPG Reloaded: An Empirical Study on What Matters in Phasic Policy Gradient »
Kaixin Wang · Zhou Daquan · Jiashi Feng · Shie Mannor -
2023 Poster: Learning Hidden Markov Models When the Locations of Missing Observations are Unknown »
BINYAMIN PERETS · Mark Kozdoba · Shie Mannor -
2023 Poster: Reward-Mixing MDPs with Few Contexts are Learnable »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Poster: Actor-Critic based Improper Reinforcement Learning »
Mohammadi Zaki · Avi Mohan · Aditya Gopalan · Shie Mannor -
2022 Poster: Optimizing Tensor Network Contraction Using Reinforcement Learning »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2022 Poster: The Geometry of Robust Value Functions »
Kaixin Wang · Navdeep Kumar · Kuangqi Zhou · Bryan Hooi · Jiashi Feng · Shie Mannor -
2022 Spotlight: The Geometry of Robust Value Functions »
Kaixin Wang · Navdeep Kumar · Kuangqi Zhou · Bryan Hooi · Jiashi Feng · Shie Mannor -
2022 Spotlight: Actor-Critic based Improper Reinforcement Learning »
Mohammadi Zaki · Avi Mohan · Aditya Gopalan · Shie Mannor -
2022 Spotlight: Optimizing Tensor Network Contraction Using Reinforcement Learning »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2022 Poster: Coordinated Attacks against Contextual Bandits: Fundamental Limits and Defense Mechanisms »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Spotlight: Coordinated Attacks against Contextual Bandits: Fundamental Limits and Defense Mechanisms »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2021 : Invited Speaker: Shie Mannor: Lenient Regret »
Shie Mannor -
2018 Poster: Beyond the One-Step Greedy Approach in Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2018 Oral: Beyond the One-Step Greedy Approach in Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2017 Workshop: Lifelong Learning: A Reinforcement Learning Approach »
Sarath Chandar · Balaraman Ravindran · Daniel J. Mankowitz · Shie Mannor · Tom Zahavy -
2017 Poster: End-to-End Differentiable Adversarial Imitation Learning »
Nir Baram · Oron Anschel · Itai Caspi · Shie Mannor -
2017 Talk: End-to-End Differentiable Adversarial Imitation Learning »
Nir Baram · Oron Anschel · Itai Caspi · Shie Mannor