Timezone: »
Poster
Deep Tensor Convolution on Multicores
David Budden · Alexander Matveev · Shibani Santurkar · Shraman Ray Chaudhuri · Nir Shavit
Deep convolutional neural networks (ConvNets) of 3-dimensional kernels allow joint modeling of spatiotemporal features. These networks have improved performance of video and volumetric image analysis, but have been limited in size due to the low memory ceiling of GPU hardware. Existing CPU implementations overcome this constraint but are impractically slow. Here we extend and optimize the faster Winograd-class of convolutional algorithms to the $N$-dimensional case and specifically for CPU hardware. First, we remove the need to manually hand-craft algorithms by exploiting the relaxed constraints and cheap sparse access of CPU memory. Second, we maximize CPU utilization and multicore scalability by transforming data matrices to be cache-aware, integer multiples of AVX vector widths. Treating 2-dimensional ConvNets as a special (and the least beneficial) case of our approach, we demonstrate a 5 to 25-fold improvement in throughput compared to previous state-of-the-art.
Author Information
David Budden (MIT / DeepMind)
Alexander Matveev (MIT)
Shibani Santurkar (MIT)
Shraman Ray Chaudhuri (MIT)
Nir Shavit (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Talk: Deep Tensor Convolution on Multicores »
Wed. Aug 9th 12:48 -- 01:06 AM Room Darling Harbour Theatre
More from the Same Authors
-
2023 Poster: Whose Opinions Do Language Models Reflect? »
Shibani Santurkar · Cinoo Lee · Esin Durmus · Faisal Ladhak · Tatsunori Hashimoto · Percy Liang -
2023 Oral: Whose Opinions Do Language Models Reflect? »
Shibani Santurkar · Cinoo Lee · Esin Durmus · Faisal Ladhak · Tatsunori Hashimoto · Percy Liang -
2022 Workshop: Principles of Distribution Shift (PODS) »
Elan Rosenfeld · Saurabh Garg · Shibani Santurkar · Jamie Morgenstern · Hossein Mobahi · Zachary Lipton · Andrej Risteski -
2021 Poster: On the Predictability of Pruning Across Scales »
Jonathan Rosenfeld · Jonathan Frankle · Michael Carbin · Nir Shavit -
2021 Spotlight: On the Predictability of Pruning Across Scales »
Jonathan Rosenfeld · Jonathan Frankle · Michael Carbin · Nir Shavit -
2021 Poster: Leveraging Sparse Linear Layers for Debuggable Deep Networks »
Eric Wong · Shibani Santurkar · Aleksander Madry -
2021 Oral: Leveraging Sparse Linear Layers for Debuggable Deep Networks »
Eric Wong · Shibani Santurkar · Aleksander Madry -
2020 Poster: From ImageNet to Image Classification: Contextualizing Progress on Benchmarks »
Dimitris Tsipras · Shibani Santurkar · Logan Engstrom · Andrew Ilyas · Aleksander Madry -
2020 Poster: Identifying Statistical Bias in Dataset Replication »
Logan Engstrom · Andrew Ilyas · Shibani Santurkar · Dimitris Tsipras · Jacob Steinhardt · Aleksander Madry -
2018 Poster: A Classification-Based Study of Covariate Shift in GAN Distributions »
Shibani Santurkar · Ludwig Schmidt · Aleksander Madry -
2018 Oral: A Classification-Based Study of Covariate Shift in GAN Distributions »
Shibani Santurkar · Ludwig Schmidt · Aleksander Madry