Timezone: »
Multi-label classification deals with the problem where each instance is associated with multiple class labels. Because evaluation in multi-label classification is more complicated than single-label setting, a number of performance measures have been proposed. It is noticed that an algorithm usually performs differently on different measures. Therefore, it is important to understand which algorithms perform well on which measure(s) and why. In this paper, we propose a unified margin view to revisit eleven performance measures in multi-label classification. In particular, we define label-wise margin and instance-wise margin, and prove that through maximizing these margins, different corresponding performance measures are to be optimized. Based on the defined margins, a max-margin approach called LIMO is designed and empirical results validate our theoretical findings.
Author Information
Xi-Zhu Wu (Nanjing University)
Zhi-Hua Zhou (Nanjing University)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: A Unified View of Multi-Label Performance Measures »
Wed. Aug 9th 08:30 AM -- 12:00 PM Room Gallery #139
More from the Same Authors
-
2023 Poster: Improved RKME Model Specification for Model Reuse »
Lan-Zhe Guo · Zhi Zhou · Yu-Feng Li · Zhi-Hua Zhou -
2023 Poster: Fast Rates in Time-Varying Strongly Monotone Games »
Yu-Hu Yan · Peng Zhao · Zhi-Hua Zhou -
2023 Poster: Estimating Possible Causal Effects in the Presence of Latent Variables »
Tian-Zuo Wang · Tian Qin · Zhi-Hua Zhou -
2022 Poster: No-Regret Learning in Time-Varying Zero-Sum Games »
Mengxiao Zhang · Peng Zhao · Haipeng Luo · Zhi-Hua Zhou -
2022 Spotlight: No-Regret Learning in Time-Varying Zero-Sum Games »
Mengxiao Zhang · Peng Zhao · Haipeng Luo · Zhi-Hua Zhou -
2022 Poster: Dynamic Regret of Online Markov Decision Processes »
Peng Zhao · Long-Fei Li · Zhi-Hua Zhou -
2022 Spotlight: Dynamic Regret of Online Markov Decision Processes »
Peng Zhao · Long-Fei Li · Zhi-Hua Zhou -
2021 Poster: Budgeted Heterogeneous Treatment Effect Estimation »
Tian Qin · Tian-Zuo Wang · Zhi-Hua Zhou -
2021 Spotlight: Budgeted Heterogeneous Treatment Effect Estimation »
Tian Qin · Tian-Zuo Wang · Zhi-Hua Zhou -
2020 Poster: Cost-effectively Identifying Causal Effects When Only Response Variable is Observable »
Tian-Zuo Wang · Xi-Zhu Wu · Sheng-Jun Huang · Zhi-Hua Zhou -
2020 Poster: Learning with Feature and Distribution Evolvable Streams »
Zhen-Yu Zhang · Peng Zhao · Yuan Jiang · Zhi-Hua Zhou -
2019 Poster: Adaptive Regret of Convex and Smooth Functions »
Lijun Zhang · Tie-Yan Liu · Zhi-Hua Zhou -
2019 Oral: Adaptive Regret of Convex and Smooth Functions »
Lijun Zhang · Tie-Yan Liu · Zhi-Hua Zhou -
2019 Poster: Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin »
Xi-Zhu Wu · Song Liu · Zhi-Hua Zhou -
2019 Oral: Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin »
Xi-Zhu Wu · Song Liu · Zhi-Hua Zhou -
2018 Poster: Rectify Heterogeneous Models with Semantic Mapping »
Han-Jia Ye · De-Chuan Zhan · Yuan Jiang · Zhi-Hua Zhou -
2018 Poster: Dynamic Regret of Strongly Adaptive Methods »
Lijun Zhang · Tianbao Yang · rong jin · Zhi-Hua Zhou -
2018 Oral: Rectify Heterogeneous Models with Semantic Mapping »
Han-Jia Ye · De-Chuan Zhan · Yuan Jiang · Zhi-Hua Zhou -
2018 Oral: Dynamic Regret of Strongly Adaptive Methods »
Lijun Zhang · Tianbao Yang · rong jin · Zhi-Hua Zhou