Timezone: »
Neural networks have proven effective at solving difficult problems but designing their architectures can be challenging, even for image classification problems alone. Our goal is to minimize human participation, so we employ evolutionary algorithms to discover such networks automatically. Despite significant computational requirements, we show that it is now possible to evolve models with accuracies within the range of those published in the last year. Specifically, we employ simple evolutionary techniques at unprecedented scales to discover models for the CIFAR-10 and CIFAR-100 datasets, starting from trivial initial conditions and reaching accuracies of 94.6% (95.6% for ensemble) and 77.0%, respectively. To do this, we use novel and intuitive mutation operators that navigate large search spaces; we stress that no human participation is required once evolution starts and that the output is a fully-trained model. Throughout this work, we place special emphasis on the repeatability of results, the variability in the outcomes and the computational requirements.
Author Information
Esteban Real (Google Inc.)
Sherry Moore (Google Inc.)
Andrew Selle (Google Inc.)
Saurabh Saxena (Google Inc.)
Yutaka Leon Suematsu (Google Inc.)
Jie Tan (Google Inc.)
Quoc Le (Google Brain)
Alexey Kurakin (Google Brain)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Large-Scale Evolution of Image Classifiers »
Wed. Aug 9th 08:30 AM -- 12:00 PM Room Gallery #137
More from the Same Authors
-
2023 : DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining »
Sang Michael Xie · Hieu Pham · Xuanyi Dong · Nan Du · Hanxiao Liu · Yifeng Lu · Percy Liang · Quoc Le · Tengyu Ma · Adams Wei Yu -
2023 : Guided Evolution with Binary Predictors for ML Program Search »
John Co-Reyes · Yingjie Miao · George Tucker · Aleksandra Faust · Esteban Real -
2023 Poster: The Flan Collection: Designing Data and Methods for Effective Instruction Tuning »
Shayne Longpre · Le Hou · Tu Vu · Albert Webson · Hyung Won Chung · Yi Tay · Denny Zhou · Quoc Le · Barret Zoph · Jason Wei · Adam Roberts -
2023 Poster: Brainformers: Trading Simplicity for Efficiency »
Yanqi Zhou · Nan Du · Yanping Huang · Daiyi Peng · Chang Lan · Da Huang · Siamak Shakeri · David So · Andrew Dai · Yifeng Lu · Zhifeng Chen · Quoc Le · Claire Cui · James Laudon · Jeff Dean -
2022 : Paper 15: On the Robustness of Safe Reinforcement Learning under Observational Perturbations »
Zuxin Liu · Zhepeng Cen · Huan Zhang · Jie Tan · Bo Li · Ding Zhao -
2022 Poster: Transformer Quality in Linear Time »
Weizhe Hua · Zihang Dai · Hanxiao Liu · Quoc Le -
2022 Poster: GLaM: Efficient Scaling of Language Models with Mixture-of-Experts »
Nan Du · Yanping Huang · Andrew Dai · Simon Tong · Dmitry Lepikhin · Yuanzhong Xu · Maxim Krikun · Yanqi Zhou · Adams Wei Yu · Orhan Firat · Barret Zoph · William Fedus · Maarten Bosma · Zongwei Zhou · Tao Wang · Emma Wang · Kellie Webster · Marie Pellat · Kevin Robinson · Kathleen Meier-Hellstern · Toju Duke · Lucas Dixon · Kun Zhang · Quoc Le · Yonghui Wu · Zhifeng Chen · Claire Cui -
2022 Spotlight: GLaM: Efficient Scaling of Language Models with Mixture-of-Experts »
Nan Du · Yanping Huang · Andrew Dai · Simon Tong · Dmitry Lepikhin · Yuanzhong Xu · Maxim Krikun · Yanqi Zhou · Adams Wei Yu · Orhan Firat · Barret Zoph · William Fedus · Maarten Bosma · Zongwei Zhou · Tao Wang · Emma Wang · Kellie Webster · Marie Pellat · Kevin Robinson · Kathleen Meier-Hellstern · Toju Duke · Lucas Dixon · Kun Zhang · Quoc Le · Yonghui Wu · Zhifeng Chen · Claire Cui -
2022 Spotlight: Transformer Quality in Linear Time »
Weizhe Hua · Zihang Dai · Hanxiao Liu · Quoc Le -
2021 Poster: Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision »
Chao Jia · Yinfei Yang · Ye Xia · Yi-Ting Chen · Zarana Parekh · Hieu Pham · Quoc Le · Yun-Hsuan Sung · Zhen Li · Tom Duerig -
2021 Oral: Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision »
Chao Jia · Yinfei Yang · Ye Xia · Yi-Ting Chen · Zarana Parekh · Hieu Pham · Quoc Le · Yun-Hsuan Sung · Zhen Li · Tom Duerig -
2021 Poster: EfficientNetV2: Smaller Models and Faster Training »
Mingxing Tan · Quoc Le -
2021 Poster: Towards Domain-Agnostic Contrastive Learning »
Vikas Verma · Thang Luong · Kenji Kawaguchi · Hieu Pham · Quoc Le -
2021 Spotlight: EfficientNetV2: Smaller Models and Faster Training »
Mingxing Tan · Quoc Le -
2021 Spotlight: Towards Domain-Agnostic Contrastive Learning »
Vikas Verma · Thang Luong · Kenji Kawaguchi · Hieu Pham · Quoc Le -
2020 Poster: Go Wide, Then Narrow: Efficient Training of Deep Thin Networks »
Denny Zhou · Mao Ye · Chen Chen · Tianjian Meng · Mingxing Tan · Xiaodan Song · Quoc Le · Qiang Liu · Dale Schuurmans -
2020 Poster: AutoML-Zero: Evolving Machine Learning Algorithms From Scratch »
Esteban Real · Chen Liang · David So · Quoc Le -
2019 Poster: NAS-Bench-101: Towards Reproducible Neural Architecture Search »
Chris Ying · Aaron Klein · Eric Christiansen · Esteban Real · Kevin Murphy · Frank Hutter -
2019 Oral: NAS-Bench-101: Towards Reproducible Neural Architecture Search »
Chris Ying · Aaron Klein · Eric Christiansen · Esteban Real · Kevin Murphy · Frank Hutter -
2019 Poster: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks »
Mingxing Tan · Quoc Le -
2019 Poster: The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study »
Daniel Park · Jascha Sohl-Dickstein · Quoc Le · Samuel Smith -
2019 Poster: The Evolved Transformer »
David So · Quoc Le · Chen Liang -
2019 Oral: The Evolved Transformer »
David So · Quoc Le · Chen Liang -
2019 Oral: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks »
Mingxing Tan · Quoc Le -
2019 Oral: The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study »
Daniel Park · Jascha Sohl-Dickstein · Quoc Le · Samuel Smith -
2018 Poster: Understanding and Simplifying One-Shot Architecture Search »
Gabriel Bender · Pieter-Jan Kindermans · Barret Zoph · Vijay Vasudevan · Quoc Le -
2018 Poster: Learning Longer-term Dependencies in RNNs with Auxiliary Losses »
Trieu H Trinh · Andrew Dai · Thang Luong · Quoc Le -
2018 Oral: Learning Longer-term Dependencies in RNNs with Auxiliary Losses »
Trieu H Trinh · Andrew Dai · Thang Luong · Quoc Le -
2018 Oral: Understanding and Simplifying One-Shot Architecture Search »
Gabriel Bender · Pieter-Jan Kindermans · Barret Zoph · Vijay Vasudevan · Quoc Le -
2018 Poster: Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games? »
Maithra Raghu · Alexander Irpan · Jacob Andreas · Bobby Kleinberg · Quoc Le · Jon Kleinberg -
2018 Oral: Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games? »
Maithra Raghu · Alexander Irpan · Jacob Andreas · Bobby Kleinberg · Quoc Le · Jon Kleinberg -
2018 Poster: Efficient Neural Architecture Search via Parameters Sharing »
Hieu Pham · Melody Guan · Barret Zoph · Quoc Le · Jeff Dean -
2018 Oral: Efficient Neural Architecture Search via Parameters Sharing »
Hieu Pham · Melody Guan · Barret Zoph · Quoc Le · Jeff Dean -
2017 Poster: Neural Optimizer Search using Reinforcement Learning »
Irwan Bello · Barret Zoph · Vijay Vasudevan · Quoc Le -
2017 Poster: Device Placement Optimization with Reinforcement Learning »
Azalia Mirhoseini · Hieu Pham · Quoc Le · benoit steiner · Mohammad Norouzi · Rasmus Larsen · Yuefeng Zhou · Naveen Kumar · Samy Bengio · Jeff Dean -
2017 Talk: Neural Optimizer Search using Reinforcement Learning »
Irwan Bello · Barret Zoph · Vijay Vasudevan · Quoc Le -
2017 Talk: Device Placement Optimization with Reinforcement Learning »
Azalia Mirhoseini · Hieu Pham · Quoc Le · benoit steiner · Mohammad Norouzi · Rasmus Larsen · Yuefeng Zhou · Naveen Kumar · Samy Bengio · Jeff Dean