Timezone: »
We approach structured output prediction by optimizing a deep value network (DVN) to precisely estimate the task loss on different output configurations for a given input. Once the model is trained, we perform inference by gradient descent on the continuous relaxations of the output variables to find outputs with promising scores from the value network. When applied to image segmentation, the value network takes an image and a segmentation mask as inputs and predicts a scalar estimating the intersection over union between the input and ground truth masks. For multi-label classification, the DVN's objective is to correctly predict the F1 score for any potential label configuration. The DVN framework achieves the state-of-the-art results on multi-label prediction and image segmentation benchmarks.
Author Information
Michael Gygli (Gifs.com)
Mohammad Norouzi (Google)
Anelia Angelova (Google Brain)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs »
Wed. Aug 9th 08:30 AM -- 12:00 PM Room Gallery #112
More from the Same Authors
-
2020 Poster: Imputer: Sequence Modelling via Imputation and Dynamic Programming »
William Chan · Chitwan Saharia · Geoffrey Hinton · Mohammad Norouzi · Navdeep Jaitly -
2020 Poster: An Optimistic Perspective on Offline Deep Reinforcement Learning »
Rishabh Agarwal · Dale Schuurmans · Mohammad Norouzi -
2020 Poster: A Simple Framework for Contrastive Learning of Visual Representations »
Ting Chen · Simon Kornblith · Mohammad Norouzi · Geoffrey Hinton -
2019 Poster: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Poster: Learning to Generalize from Sparse and Underspecified Rewards »
Rishabh Agarwal · Chen Liang · Dale Schuurmans · Mohammad Norouzi -
2019 Oral: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Oral: Learning to Generalize from Sparse and Underspecified Rewards »
Rishabh Agarwal · Chen Liang · Dale Schuurmans · Mohammad Norouzi -
2019 Poster: Understanding the Impact of Entropy on Policy Optimization »
Zafarali Ahmed · Nicolas Le Roux · Mohammad Norouzi · Dale Schuurmans -
2019 Oral: Understanding the Impact of Entropy on Policy Optimization »
Zafarali Ahmed · Nicolas Le Roux · Mohammad Norouzi · Dale Schuurmans -
2018 Poster: Smoothed Action Value Functions for Learning Gaussian Policies »
Ofir Nachum · Mohammad Norouzi · George Tucker · Dale Schuurmans -
2018 Oral: Smoothed Action Value Functions for Learning Gaussian Policies »
Ofir Nachum · Mohammad Norouzi · George Tucker · Dale Schuurmans -
2017 Poster: Device Placement Optimization with Reinforcement Learning »
Azalia Mirhoseini · Hieu Pham · Quoc Le · benoit steiner · Mohammad Norouzi · Rasmus Larsen · Yuefeng Zhou · Naveen Kumar · Samy Bengio · Jeff Dean -
2017 Talk: Device Placement Optimization with Reinforcement Learning »
Azalia Mirhoseini · Hieu Pham · Quoc Le · benoit steiner · Mohammad Norouzi · Rasmus Larsen · Yuefeng Zhou · Naveen Kumar · Samy Bengio · Jeff Dean -
2017 Poster: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders »
Cinjon Resnick · Adam Roberts · Jesse Engel · Douglas Eck · Sander Dieleman · Karen Simonyan · Mohammad Norouzi -
2017 Talk: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders »
Cinjon Resnick · Adam Roberts · Jesse Engel · Douglas Eck · Sander Dieleman · Karen Simonyan · Mohammad Norouzi