Timezone: »
Given that in practice training data is scarce for all but a small set of problems, a core question is how to incorporate prior knowledge into a model. In this paper, we consider the case of prior procedural knowledge for neural networks, such as knowing how a program should traverse a sequence, but not what local actions should be performed at each step. To this end, we present an end-to-end differentiable interpreter for the programming language Forth which enables programmers to write program sketches with slots that can be filled with behaviour trained from program input-output data. We can optimise this behaviour directly through gradient descent techniques on user-specified objectives, and also integrate the program into any larger neural computation graph. We show empirically that our interpreter is able to effectively leverage different levels of prior program structure and learn complex behaviours such as sequence sorting and addition. When connected to outputs of an LSTM and trained jointly, our interpreter achieves state-of-the-art accuracy for end-to-end reasoning about quantities expressed in natural language stories.
Author Information
Matko Bošnjak (University College London)
Tim Rocktäschel (University of Oxford)
Jason Naradowsky (University of Cambridge)
Sebastian Riedel (UCL)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Programming with a Differentiable Forth Interpreter »
Tue. Aug 8th 08:30 AM -- 12:00 PM Room Gallery #126
More from the Same Authors
-
2023 : Do LLMs selectively encode the goal of an agent's reach? »
Laura Ruis · Arduin Findeis · Herbie Bradley · Hossein A. Rahmani · Kyoung Whan Choe · Edward Grefenstette · Tim Rocktäschel -
2023 Oral: Human-Timescale Adaptation in an Open-Ended Task Space »
Jakob Bauer · Kate Baumli · Feryal Behbahani · Avishkar Bhoopchand · Natalie Bradley-Schmieg · Michael Chang · Natalie Clay · Adrian Collister · Vibhavari Dasagi · Lucy Gonzalez · Karol Gregor · Edward Hughes · Sheleem Kashem · Maria Loks-Thompson · Hannah Openshaw · Jack Parker-Holder · Shreya Pathak · Nicolas Perez-Nieves · Nemanja Rakicevic · Tim Rocktäschel · Yannick Schroecker · Satinder Singh · Jakub Sygnowski · Karl Tuyls · Sarah York · Alexander Zacherl · Lei Zhang -
2023 Poster: Human-Timescale Adaptation in an Open-Ended Task Space »
Jakob Bauer · Kate Baumli · Feryal Behbahani · Avishkar Bhoopchand · Natalie Bradley-Schmieg · Michael Chang · Natalie Clay · Adrian Collister · Vibhavari Dasagi · Lucy Gonzalez · Karol Gregor · Edward Hughes · Sheleem Kashem · Maria Loks-Thompson · Hannah Openshaw · Jack Parker-Holder · Shreya Pathak · Nicolas Perez-Nieves · Nemanja Rakicevic · Tim Rocktäschel · Yannick Schroecker · Satinder Singh · Jakub Sygnowski · Karl Tuyls · Sarah York · Alexander Zacherl · Lei Zhang -
2022 Poster: Evolving Curricula with Regret-Based Environment Design »
Jack Parker-Holder · Minqi Jiang · Michael Dennis · Mikayel Samvelyan · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel -
2022 Spotlight: Evolving Curricula with Regret-Based Environment Design »
Jack Parker-Holder · Minqi Jiang · Michael Dennis · Mikayel Samvelyan · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel -
2021 Poster: Prioritized Level Replay »
Minqi Jiang · Edward Grefenstette · Tim Rocktäschel -
2021 Spotlight: Prioritized Level Replay »
Minqi Jiang · Edward Grefenstette · Tim Rocktäschel -
2020 : The NetHack Learning Environment Q&A »
Tim Rocktäschel · Katja Hofmann -
2020 : The NetHack Learning Environment »
Tim Rocktäschel -
2020 Workshop: 1st Workshop on Language in Reinforcement Learning (LaReL) »
Nantas Nardelli · Jelena Luketina · Nantas Nardelli · Jakob Foerster · Victor Zhong · Jacob Andreas · Tim Rocktäschel · Edward Grefenstette · Tim Rocktäschel -
2020 Poster: Learning Reasoning Strategies in End-to-End Differentiable Proving »
Pasquale Minervini · Sebastian Riedel · Pontus Stenetorp · Edward Grefenstette · Tim Rocktäschel -
2019 Poster: A Baseline for Any Order Gradient Estimation in Stochastic Computation Graphs »
Jingkai Mao · Jakob Foerster · Tim Rocktäschel · Maruan Al-Shedivat · Gregory Farquhar · Shimon Whiteson -
2019 Oral: A Baseline for Any Order Gradient Estimation in Stochastic Computation Graphs »
Jingkai Mao · Jakob Foerster · Tim Rocktäschel · Maruan Al-Shedivat · Gregory Farquhar · Shimon Whiteson