Timezone: »
Clustering is the task of grouping a set of examples so that similar examples are grouped into the same cluster while dissimilar examples are in different clusters. The quality of a clustering depends on two problem-dependent factors which are i) the chosen similarity metric and ii) the data representation. Supervised clustering approaches, which exploit labeled partitioned datasets have thus been proposed, for instance to learn a metric optimized to perform clustering. However, most of these approaches assume that the representation of the data is fixed and then learn an appropriate linear transformation. Some deep supervised clustering learning approaches have also been proposed. However, they rely on iterative methods to compute gradients resulting in high algorithmic complexity. In this paper, we propose a deep supervised clustering metric learning method that formulates a novel loss function. We derive a closed-form expression for the gradient that is efficient to compute: the complexity to compute the gradient is linear in the size of the training mini-batch and quadratic in the representation dimensionality. We further reveal how our approach can be seen as learning spectral clustering. Experiments on standard real-world datasets confirm state-of-the-art Recall@K performance.
Author Information
Marc Law (University of Toronto)
Raquel Urtasun (University of Toronto)
Richard Zemel (University of Toronto)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Deep Spectral Clustering Learning »
Wed. Aug 9th 08:30 AM -- 12:00 PM Room Gallery #14
More from the Same Authors
-
2021 : Online Algorithmic Recourse by Collective Action »
Elliot Creager · Richard Zemel -
2022 : Towards Environment-Invariant Representation Learning for Robust Task Transfer »
Benjamin Eyre · Richard Zemel · Elliot Creager -
2023 : Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift »
Benjamin Eyre · Elliot Creager · David Madras · Vardan Papyan · Richard Zemel -
2023 Test Of Time: Learning Fair Representations »
Richard Zemel · Yu Wu · Kevin Swersky · Toniann Pitassi · Cynthia Dwork -
2022 : Invited talks 3, Q/A, Amy, Rich and Liting »
Liting Sun · Amy Zhang · Richard Zemel -
2022 : Invited talks 3, Amy Zhang, Rich Zemel and Liting Sun »
Amy Zhang · Richard Zemel · Liting Sun -
2021 Workshop: Workshop on Socially Responsible Machine Learning »
Chaowei Xiao · Animashree Anandkumar · Mingyan Liu · Dawn Song · Raquel Urtasun · Jieyu Zhao · Xueru Zhang · Cihang Xie · Xinyun Chen · Bo Li -
2021 Poster: f-Domain Adversarial Learning: Theory and Algorithms »
David Acuna · Guojun Zhang · Marc Law · Sanja Fidler -
2021 Poster: SketchEmbedNet: Learning Novel Concepts by Imitating Drawings »
Alexander Wang · Mengye Ren · Richard Zemel -
2021 Poster: Learning a Universal Template for Few-shot Dataset Generalization »
Eleni Triantafillou · Hugo Larochelle · Richard Zemel · Vincent Dumoulin -
2021 Poster: Environment Inference for Invariant Learning »
Elliot Creager · Joern-Henrik Jacobsen · Richard Zemel -
2021 Spotlight: Learning a Universal Template for Few-shot Dataset Generalization »
Eleni Triantafillou · Hugo Larochelle · Richard Zemel · Vincent Dumoulin -
2021 Spotlight: Environment Inference for Invariant Learning »
Elliot Creager · Joern-Henrik Jacobsen · Richard Zemel -
2021 Spotlight: f-Domain Adversarial Learning: Theory and Algorithms »
David Acuna · Guojun Zhang · Marc Law · Sanja Fidler -
2021 Spotlight: SketchEmbedNet: Learning Novel Concepts by Imitating Drawings »
Alexander Wang · Mengye Ren · Richard Zemel -
2021 Poster: On Monotonic Linear Interpolation of Neural Network Parameters »
James Lucas · Juhan Bae · Michael Zhang · Stanislav Fort · Richard Zemel · Roger Grosse -
2021 Spotlight: On Monotonic Linear Interpolation of Neural Network Parameters »
James Lucas · Juhan Bae · Michael Zhang · Stanislav Fort · Richard Zemel · Roger Grosse -
2020 : Invited Talk 4: Prof. Richard Zemel from University of Toronto »
Richard Zemel -
2020 : Keynote #4 Raquel Urtasun »
Raquel Urtasun -
2020 Workshop: Participatory Approaches to Machine Learning »
Angela Zhou · David Madras · Deborah Raji · Smitha Milli · Bogdan Kulynych · Richard Zemel -
2020 Poster: Causal Modeling for Fairness In Dynamical Systems »
Elliot Creager · David Madras · Toniann Pitassi · Richard Zemel -
2020 Poster: Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach »
Martin Mladenov · Elliot Creager · Omer Ben-Porat · Kevin Swersky · Richard Zemel · Craig Boutilier -
2020 Poster: Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling »
Will Grathwohl · Kuan-Chieh Wang · Joern-Henrik Jacobsen · David Duvenaud · Richard Zemel -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 Poster: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Poster: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Oral: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Oral: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Poster: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2019 Oral: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2018 Poster: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Oral: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Poster: Learning to Reweight Examples for Robust Deep Learning »
Mengye Ren · Wenyuan Zeng · Bin Yang · Raquel Urtasun -
2018 Poster: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · Kijung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Poster: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · Kijung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Oral: Learning to Reweight Examples for Robust Deep Learning »
Mengye Ren · Wenyuan Zeng · Bin Yang · Raquel Urtasun -
2018 Poster: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2018 Oral: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2017 Workshop: ICML Workshop on Machine Learning for Autonomous Vehicles 2017 »
Li Erran Li · Raquel Urtasun · Andrew Gray · Silvio Savarese -
2017 Tutorial: Machine Learning for Autonomous Vehicles »
Raquel Urtasun · Andrew Gray · Carl Wellington