Timezone: »
We study the problem of using i.i.d. samples from an unknown multivariate probability distribution p to estimate the mutual information of p. This problem has recently received attention in two settings: (1) where p is assumed to be Gaussian and (2) where p is assumed only to lie in a large nonparametric smoothness class. Estimators proposed for the Gaussian case converge in high dimensions when the Gaussian assumption holds, but are brittle, failing dramatically when p is not Gaussian, while estimators proposed for the nonparametric case fail to converge with realistic sample sizes except in very low dimension. Hence, there is a lack of robust mutual information estimators for many realistic data. To address this, we propose estimators for mutual information when p is assumed to be a nonparanormal (or Gaussian copula) model, a semiparametric compromise between Gaussian and nonparametric extremes. Using theoretical bounds and experiments, we show these estimators strike a practical balance between robustness and scalability.
Author Information
Shashank Singh (Carnegie Mellon University)
Barnabás Póczos (CMU)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Nonparanormal Information Estimation »
Tue. Aug 8th 08:30 AM -- 12:00 PM Room Gallery #120
More from the Same Authors
-
2020 Poster: VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing »
Zoltán Á. Milacski · Barnabás Póczos · Andras Lorincz -
2019 Poster: Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments »
Kirthevasan Kandasamy · Willie Neiswanger · Reed Zhang · Akshay Krishnamurthy · Jeff Schneider · Barnabás Póczos -
2019 Oral: Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments »
Kirthevasan Kandasamy · Willie Neiswanger · Reed Zhang · Akshay Krishnamurthy · Jeff Schneider · Barnabás Póczos -
2018 Poster: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Oral: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Poster: Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima »
Simon Du · Jason Lee · Yuandong Tian · Aarti Singh · Barnabás Póczos -
2018 Oral: Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima »
Simon Du · Jason Lee · Yuandong Tian · Aarti Singh · Barnabás Póczos -
2017 Poster: Multi-fidelity Bayesian Optimisation with Continuous Approximations »
kirthevasan kandasamy · Gautam Dasarathy · Barnabás Póczos · Jeff Schneider -
2017 Talk: Multi-fidelity Bayesian Optimisation with Continuous Approximations »
kirthevasan kandasamy · Gautam Dasarathy · Barnabás Póczos · Jeff Schneider -
2017 Poster: The Statistical Recurrent Unit »
Junier Oliva · Barnabás Póczos · Jeff Schneider -
2017 Talk: The Statistical Recurrent Unit »
Junier Oliva · Barnabás Póczos · Jeff Schneider -
2017 Poster: Equivariance Through Parameter-Sharing »
Siamak Ravanbakhsh · Jeff Schneider · Barnabás Póczos -
2017 Talk: Equivariance Through Parameter-Sharing »
Siamak Ravanbakhsh · Jeff Schneider · Barnabás Póczos