Timezone: »
Deep neural networks (DNNs) have advanced performance on a wide range of complex tasks, rapidly outpacing our understanding of the nature of their solutions. While past work sought to advance our understanding of these models, none has made use of the rich history of problem descriptions, theories, and experimental methods developed by cognitive psychologists to study the human mind. To explore the potential value of these tools, we chose a well-established analysis from developmental psychology that explains how children learn word labels for objects, and applied that analysis to DNNs. Using datasets of stimuli inspired by the original cognitive psychology experiments, we find that state-of-the-art one shot learning models trained on ImageNet exhibit a similar bias to that observed in humans: they prefer to categorize objects according to shape rather than color. The magnitude of this shape bias varies greatly among architecturally identical, but differently seeded models, and even fluctuates within seeds throughout training, despite nearly equivalent classification performance. These results demonstrate the capability of tools from cognitive psychology for exposing hidden computational properties of DNNs, while concurrently providing us with a computational model for human word learning.
Author Information
Samuel Ritter (DeepMind)
David GT Barrett (DeepMind)
Adam Santoro (DeepMind)
Matthew Botvinick (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Tue. Aug 8th 08:30 AM -- 12:00 PM Room Gallery #113
More from the Same Authors
-
2022 Poster: Tell me why! Explanations support learning relational and causal structure »
Andrew Lampinen · Nicholas Roy · Ishita Dasgupta · Stephanie Chan · Allison Tam · James McClelland · Chen Yan · Adam Santoro · Neil Rabinowitz · Jane Wang · Feilx Hill -
2022 Poster: General-purpose, long-context autoregressive modeling with Perceiver AR »
Curtis Hawthorne · Drew Jaegle · Cătălina Cangea · Sebastian Borgeaud · Charlie Nash · Mateusz Malinowski · Sander Dieleman · Oriol Vinyals · Matthew Botvinick · Ian Simon · Hannah Sheahan · Neil Zeghidour · Jean-Baptiste Alayrac · Joao Carreira · Jesse Engel -
2022 Spotlight: Tell me why! Explanations support learning relational and causal structure »
Andrew Lampinen · Nicholas Roy · Ishita Dasgupta · Stephanie Chan · Allison Tam · James McClelland · Chen Yan · Adam Santoro · Neil Rabinowitz · Jane Wang · Feilx Hill -
2022 Spotlight: General-purpose, long-context autoregressive modeling with Perceiver AR »
Curtis Hawthorne · Drew Jaegle · Cătălina Cangea · Sebastian Borgeaud · Charlie Nash · Mateusz Malinowski · Sander Dieleman · Oriol Vinyals · Matthew Botvinick · Ian Simon · Hannah Sheahan · Neil Zeghidour · Jean-Baptiste Alayrac · Joao Carreira · Jesse Engel -
2022 Poster: A data-driven approach for learning to control computers »
Peter Humphreys · David Raposo · Tobias Pohlen · Gregory Thornton · Rachita Chhaparia · Alistair Muldal · Josh Abramson · Petko Georgiev · Adam Santoro · Timothy Lillicrap -
2022 Spotlight: A data-driven approach for learning to control computers »
Peter Humphreys · David Raposo · Tobias Pohlen · Gregory Thornton · Rachita Chhaparia · Alistair Muldal · Josh Abramson · Petko Georgiev · Adam Santoro · Timothy Lillicrap -
2021 : RL Foundation Panel »
Matthew Botvinick · Thomas Dietterich · Leslie Kaelbling · John Langford · Warrren B Powell · Csaba Szepesvari · Lihong Li · Yuxi Li -
2021 Poster: Discretization Drift in Two-Player Games »
Mihaela Rosca · Yan Wu · Benoit Dherin · David GT Barrett -
2021 Spotlight: Discretization Drift in Two-Player Games »
Mihaela Rosca · Yan Wu · Benoit Dherin · David GT Barrett -
2020 Poster: Stabilizing Transformers for Reinforcement Learning »
Emilio Parisotto · Francis Song · Jack Rae · Razvan Pascanu · Caglar Gulcehre · Siddhant Jayakumar · Max Jaderberg · Raphael Lopez Kaufman · Aidan Clark · Seb Noury · Matthew Botvinick · Nicolas Heess · Raia Hadsell -
2020 Poster: An Explicitly Relational Neural Network Architecture »
Murray Shanahan · Kyriacos Nikiforou · Antonia Creswell · Christos Kaplanis · David GT Barrett · Marta Garnelo -
2019 Poster: Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Francis Song · Edward Hughes · Neil Burch · Iain Dunning · Shimon Whiteson · Matthew Botvinick · Michael Bowling -
2019 Poster: Multi-Object Representation Learning with Iterative Variational Inference »
Klaus Greff · Raphael Lopez Kaufman · Rishabh Kabra · Nicholas Watters · Christopher Burgess · Daniel Zoran · Loic Matthey · Matthew Botvinick · Alexander Lerchner -
2019 Oral: Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Francis Song · Edward Hughes · Neil Burch · Iain Dunning · Shimon Whiteson · Matthew Botvinick · Michael Bowling -
2019 Oral: Multi-Object Representation Learning with Iterative Variational Inference »
Klaus Greff · Raphael Lopez Kaufman · Rishabh Kabra · Nicholas Watters · Christopher Burgess · Daniel Zoran · Loic Matthey · Matthew Botvinick · Alexander Lerchner -
2019 Poster: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2019 Oral: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2018 Poster: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap -
2018 Oral: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap -
2018 Poster: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2018 Poster: Been There, Done That: Meta-Learning with Episodic Recall »
Samuel Ritter · Jane Wang · Zeb Kurth-Nelson · Siddhant Jayakumar · Charles Blundell · Razvan Pascanu · Matthew Botvinick -
2018 Oral: Been There, Done That: Meta-Learning with Episodic Recall »
Samuel Ritter · Jane Wang · Zeb Kurth-Nelson · Siddhant Jayakumar · Charles Blundell · Razvan Pascanu · Matthew Botvinick -
2018 Oral: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2017 Poster: Learning to Learn without Gradient Descent by Gradient Descent »
Yutian Chen · Matthew Hoffman · Sergio Gómez Colmenarejo · Misha Denil · Timothy Lillicrap · Matthew Botvinick · Nando de Freitas -
2017 Poster: DARLA: Improving Zero-Shot Transfer in Reinforcement Learning »
Irina Higgins · Arka Pal · Andrei A Rusu · Loic Matthey · Christopher Burgess · Alexander Pritzel · Matthew Botvinick · Charles Blundell · Alexander Lerchner -
2017 Talk: Learning to Learn without Gradient Descent by Gradient Descent »
Yutian Chen · Matthew Hoffman · Sergio Gómez Colmenarejo · Misha Denil · Timothy Lillicrap · Matthew Botvinick · Nando de Freitas -
2017 Talk: DARLA: Improving Zero-Shot Transfer in Reinforcement Learning »
Irina Higgins · Arka Pal · Andrei A Rusu · Loic Matthey · Christopher Burgess · Alexander Pritzel · Matthew Botvinick · Charles Blundell · Alexander Lerchner