Timezone: »
Talk
Variational Boosting: Iteratively Refining Posterior Approximations
Andrew Miller · Nicholas J Foti · Ryan P. Adams
We propose a black-box variational inference method to approximate intractable distributions with an increasingly rich approximating class. Our method, variational boosting, iteratively refines an existing variational approximation by solving a sequence of optimization problems, allowing a trade-off between computation time and accuracy. We expand the variational approximating class by incorporating additional covariance structure and by introducing new components to form a mixture. We apply variational boosting to synthetic and real statistical models, and show that the resulting posterior inferences compare favorably to existing variational algorithms.
Author Information
Andrew Miller (Harvard)
Nicholas J Foti (University of Washington)
Ryan P. Adams (Google Brain and Princeton University)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Variational Boosting: Iteratively Refining Posterior Approximations »
Tue. Aug 8th 08:30 AM -- 12:00 PM Room Gallery #109
More from the Same Authors
-
2021 : Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability »
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan P. Adams · Sergey Levine -
2020 Poster: Amortized Finite Element Analysis for Fast PDE-Constrained Optimization »
Tianju Xue · Alex Beatson · Sigrid Adriaenssens · Ryan P. Adams -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2018 Poster: Semi-Amortized Variational Autoencoders »
Yoon Kim · Sam Wiseman · Andrew Miller · David Sontag · Alexander Rush -
2018 Poster: oi-VAE: Output Interpretable VAEs for Nonlinear Group Factor Analysis »
Samuel Ainsworth · Nicholas J Foti · Adrian KC Lee · Emily Fox -
2018 Oral: oi-VAE: Output Interpretable VAEs for Nonlinear Group Factor Analysis »
Samuel Ainsworth · Nicholas J Foti · Adrian KC Lee · Emily Fox -
2018 Oral: Semi-Amortized Variational Autoencoders »
Yoon Kim · Sam Wiseman · Andrew Miller · David Sontag · Alexander Rush -
2017 Poster: Stochastic Gradient MCMC Methods for Hidden Markov Models »
Yi-An Ma · Nicholas J Foti · Emily Fox -
2017 Talk: Stochastic Gradient MCMC Methods for Hidden Markov Models »
Yi-An Ma · Nicholas J Foti · Emily Fox