Timezone: »
Imposing sparse + group-sparse superposition structures in high-dimensional parameter estimation is known to provide flexible regularization that is more realistic for many real-world problems. For example, such a superposition enables partially-shared support sets in multi-task learning, thereby striking the right balance between parameter overlap across tasks and task specificity. Existing theoretical results on estimation consistency, however, are problematic as they require too stringent an assumption: the incoherence between sparse and group-sparse superposed components. In this paper, we fill the gap between the practical success and suboptimal analysis of sparse + group-sparse models, by providing the first consistency results that do not require unrealistic assumptions. We also study non-convex counterparts of sparse + group-sparse models. Interestingly, we show that these are guaranteed to recover the true support set under much milder conditions and with smaller sample size than convex models, which might be critical in practical applications as illustrated by our experiments.
Author Information
Eunho Yang (KAIST / AItrics)
Aurelie Lozano (IBM)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Sparse + Group-Sparse Dirty Models: Statistical Guarantees without Unreasonable Conditions and a Case for Non-Convexity »
Tue. Aug 8th 08:30 AM -- 12:00 PM Room Gallery #96
More from the Same Authors
-
2022 : Protein Representation Learning by Geometric Structure Pretraining »
Zuobai Zhang · Zuobai Zhang · Minghao Xu · Minghao Xu · Arian Jamasb · Arian Jamasb · Vijil Chenthamarakshan · Vijil Chenthamarakshan · Aurelie Lozano · Payel Das · Payel Das · Jian Tang · Jian Tang -
2023 Poster: Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation »
Yeonsung Jung · Hajin Shim · June Yong Yang · Eunho Yang -
2023 Poster: RGE: A Repulsive Graph Rectification for Node Classification via Influence »
Jaeyun Song · Sungyub Kim · Eunho Yang -
2022 Poster: TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification »
Jaeyun Song · Joonhyung Park · Eunho Yang -
2022 Spotlight: TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification »
Jaeyun Song · Joonhyung Park · Eunho Yang -
2021 Poster: Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation »
Dongchan Min · Dong Bok Lee · Eunho Yang · Sung Ju Hwang -
2021 Spotlight: Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation »
Dongchan Min · Dong Bok Lee · Eunho Yang · Sung Ju Hwang -
2021 Poster: Federated Continual Learning with Weighted Inter-client Transfer »
Jaehong Yoon · Wonyong Jeong · GiWoong Lee · Eunho Yang · Sung Ju Hwang -
2021 Spotlight: Federated Continual Learning with Weighted Inter-client Transfer »
Jaehong Yoon · Wonyong Jeong · GiWoong Lee · Eunho Yang · Sung Ju Hwang -
2020 Poster: Cost-Effective Interactive Attention Learning with Neural Attention Processes »
Jay Heo · Junhyeon Park · Hyewon Jeong · Kwang Joon Kim · Juho Lee · Eunho Yang · Sung Ju Hwang -
2019 Poster: Spectral Approximate Inference »
Sejun Park · Eunho Yang · Se-Young Yun · Jinwoo Shin -
2019 Oral: Spectral Approximate Inference »
Sejun Park · Eunho Yang · Se-Young Yun · Jinwoo Shin -
2019 Poster: Trimming the $\ell_1$ Regularizer: Statistical Analysis, Optimization, and Applications to Deep Learning »
Jihun Yun · Peng Zheng · Eunho Yang · Aurelie Lozano · Aleksandr Aravkin -
2019 Oral: Trimming the $\ell_1$ Regularizer: Statistical Analysis, Optimization, and Applications to Deep Learning »
Jihun Yun · Peng Zheng · Eunho Yang · Aurelie Lozano · Aleksandr Aravkin -
2018 Poster: Deep Asymmetric Multi-task Feature Learning »
Hae Beom Lee · Eunho Yang · Sung Ju Hwang -
2018 Oral: Deep Asymmetric Multi-task Feature Learning »
Hae Beom Lee · Eunho Yang · Sung Ju Hwang -
2017 Poster: Ordinal Graphical Models: A Tale of Two Approaches »
ARUN SAI SUGGALA · Eunho Yang · Pradeep Ravikumar -
2017 Talk: Ordinal Graphical Models: A Tale of Two Approaches »
ARUN SAI SUGGALA · Eunho Yang · Pradeep Ravikumar