Talk
Gradient Boosted Decision Trees for High Dimensional Sparse Output
Si Si · Huan Zhang · Sathiya Keerthi · Dhruv Mahajan · Inderjit Dhillon · Cho-Jui Hsieh

Tue Aug 8th 01:48 -- 02:06 PM @ C4.5

In this paper, we study the gradient boosted decision trees (GBDT) when the output space is high dimensional and sparse. For example, in multilabel classification, the output space is a $L$-dimensional 0/1 vector, where $L$ is number of labels that can grow to millions and beyond in many modern applications. We show that vanilla GBDT can easily run out of memory or encounter near-forever running time in this regime, and propose a new GBDT variant, GBDT-SPARSE, to resolve this problem by employing $L_0$ regularization. We then discuss in detail how to utilize this sparsity to conduct GBDT training, including splitting the nodes, computing the sparse residual, and predicting in sublinear time. Finally, we apply our algorithm to extreme multilabel classification problems, and show that the proposed GBDT-SPARSE achieves an order of magnitude improvements in model size and prediction time over existing methods, while yielding similar performance.

Author Information

Si Si (Google Research)
Huan Zhang (UC Davis)
Sathiya Keerthi (Microsoft)
Dhruv Mahajan (Facebook)
Inderjit Dhillon (UT Austin & Amazon)

Inderjit Dhillon is the Gottesman Family Centennial Professor of Computer Science and Mathematics at UT Austin, where he is also the Director of the ICES Center for Big Data Analytics. His main research interests are in big data, machine learning, network analysis, linear algebra and optimization. He received his B.Tech. degree from IIT Bombay, and Ph.D. from UC Berkeley. Inderjit has received several awards, including the ICES Distinguished Research Award, the SIAM Outstanding Paper Prize, the Moncrief Grand Challenge Award, the SIAM Linear Algebra Prize, the University Research Excellence Award, and the NSF Career Award. He has published over 160 journal and conference papers, and has served on the Editorial Board of the Journal of Machine Learning Research, the IEEE Transactions of Pattern Analysis and Machine Intelligence, Foundations and Trends in Machine Learning and the SIAM Journal for Matrix Analysis and Applications. Inderjit is an ACM Fellow, an IEEE Fellow, a SIAM Fellow and an AAAS Fellow.

Cho-Jui Hsieh (University of California, Davis)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors