Timezone: »
This paper studies systematic exploration for reinforcement learning (RL) with rich observations and function approximation. We introduce contextual decision processes (CDPs), that unify most prior RL settings. Our first contribution is a complexity measure, the Bellman rank, that we show enables tractable learning of near-optimal behavior in CDPs and is naturally small for many well-studied RL models. Our second contribution is a new RL algorithm that does systematic exploration to learn near-optimal behavior in CDPs with low Bellman rank. The algorithm requires a number of samples that is polynomial in all relevant parameters but independent of the number of unique contexts. Our approach uses Bellman error minimization with optimistic exploration and provides new insights into efficient exploration for RL with function approximation.
Author Information
Nan Jiang (Microsoft Research)
Akshay Krishnamurthy (UMass)
Alekh Agarwal (Microsoft Research)
John Langford (Microsoft Research)
Robert Schapire (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Tue. Aug 8th 08:30 AM -- 12:00 PM Room Gallery #65
More from the Same Authors
-
2021 : Provable RL with Exogenous Distractors via Multistep Inverse Dynamics »
Yonathan Efroni · Dipendra Misra · Akshay Krishnamurthy · Alekh Agarwal · John Langford -
2021 : Provably efficient exploration-free transfer RL for near-deterministic latent dynamics »
Yao Liu · Dipendra Misra · Miroslav Dudik · Robert Schapire -
2021 : Sparsity in the Partially Controllable LQR »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2022 : Interaction-Grounded Learning with Action-inclusive Feedback »
Tengyang Xie · Akanksha Saran · Dylan Foster · Lekan Molu · Ida Momennejad · Nan Jiang · Paul Mineiro · John Langford -
2023 : Exposing Attention Glitches with Flip-Flop Language Modeling »
Bingbin Liu · Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Cyril Zhang -
2023 : Exposing Attention Glitches with Flip-Flop Language Modeling »
Bingbin Liu · Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Cyril Zhang -
2023 Workshop: Interactive Learning with Implicit Human Feedback »
Andi Peng · Akanksha Saran · Andreea Bobu · Tengyang Xie · Pierre-Yves Oudeyer · Anca Dragan · John Langford -
2023 Poster: Streaming Active Learning with Deep Neural Networks »
Akanksha Saran · Safoora Yousefi · Akshay Krishnamurthy · John Langford · Jordan Ash -
2023 Poster: Statistical Learning under Heterogenous Distribution Shift »
Max Simchowitz · Anurag Ajay · Pulkit Agrawal · Akshay Krishnamurthy -
2023 Tutorial: Discovering Agent-Centric Latent States in Theory and in Practice »
John Langford · Alex Lamb -
2023 Expo Talk Panel: Vowpal Wabbit: year in review and looking ahead in an LLM world »
John Langford · Byron Xu · Cheng Tan · Jack Gerrits · Lili Wu · Mark Rucker · Olga Vrousgou -
2022 Poster: Universal and data-adaptive algorithms for model selection in linear contextual bandits »
Vidya Muthukumar · Akshay Krishnamurthy -
2022 Spotlight: Universal and data-adaptive algorithms for model selection in linear contextual bandits »
Vidya Muthukumar · Akshay Krishnamurthy -
2022 Poster: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Sparsity in Partially Controllable Linear Systems »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2022 Poster: Contextual Bandits with Large Action Spaces: Made Practical »
Yinglun Zhu · Dylan Foster · John Langford · Paul Mineiro -
2022 Poster: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Spotlight: Sparsity in Partially Controllable Linear Systems »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2022 Spotlight: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Spotlight: Contextual Bandits with Large Action Spaces: Made Practical »
Yinglun Zhu · Dylan Foster · John Langford · Paul Mineiro -
2022 Spotlight: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Provable Reinforcement Learning with a Short-Term Memory »
Yonathan Efroni · Chi Jin · Akshay Krishnamurthy · Sobhan Miryoosefi -
2022 Spotlight: Provable Reinforcement Learning with a Short-Term Memory »
Yonathan Efroni · Chi Jin · Akshay Krishnamurthy · Sobhan Miryoosefi -
2022 : Introduction »
John Langford -
2021 : Sparsity in the Partially Controllable LQR »
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang -
2021 : RL + Recommender Systems Panel »
Alekh Agarwal · Ed Chi · Maria Dimakopoulou · Georgios Theocharous · Minmin Chen · Lihong Li -
2021 : RL Foundation Panel »
Matthew Botvinick · Thomas Dietterich · Leslie Kaelbling · John Langford · Warrren B Powell · Csaba Szepesvari · Lihong Li · Yuxi Li -
2021 Poster: Interaction-Grounded Learning »
Tengyang Xie · John Langford · Paul Mineiro · Ida Momennejad -
2021 Spotlight: Interaction-Grounded Learning »
Tengyang Xie · John Langford · Paul Mineiro · Ida Momennejad -
2021 Poster: ChaCha for Online AutoML »
Qingyun Wu · Chi Wang · John Langford · Paul Mineiro · Marco Rossi -
2021 Spotlight: ChaCha for Online AutoML »
Qingyun Wu · Chi Wang · John Langford · Paul Mineiro · Marco Rossi -
2021 Town Hall: Town Hall »
John Langford · Marina Meila · Tong Zhang · Le Song · Stefanie Jegelka · Csaba Szepesvari -
2021 Poster: Interactive Learning from Activity Description »
Khanh Nguyen · Dipendra Misra · Robert Schapire · Miroslav Dudik · Patrick Shafto -
2021 Spotlight: Interactive Learning from Activity Description »
Khanh Nguyen · Dipendra Misra · Robert Schapire · Miroslav Dudik · Patrick Shafto -
2021 Expo Workshop: Real World RL: Azure Personalizer & Vowpal Wabbit »
Sheetal Lahabar · Etienne Kintzler · Mark Rucker · Bogdan Mazoure · Qingyun Wu · Pavithra Srinath · Jack Gerrits · Olga Vrousgou · John Langford · Eduardo Salinas -
2020 : Discussion Panel »
Krzysztof Dembczynski · Prateek Jain · Alina Beygelzimer · Inderjit Dhillon · Anna Choromanska · Maryam Majzoubi · Yashoteja Prabhu · John Langford -
2020 : Representation learning and exploration in reinforcement learning - Akshay Krishnamurthy »
Akshay Krishnamurthy -
2020 : Speaker Panel »
Csaba Szepesvari · Martha White · Sham Kakade · Gergely Neu · Shipra Agrawal · Akshay Krishnamurthy -
2020 Workshop: Workshop on eXtreme Classification: Theory and Applications »
Anna Choromanska · John Langford · Maryam Majzoubi · Yashoteja Prabhu -
2020 Poster: Doubly robust off-policy evaluation with shrinkage »
Yi Su · Maria Dimakopoulou · Akshay Krishnamurthy · Miroslav Dudik -
2020 Poster: Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning »
Dipendra Kumar Misra · Mikael Henaff · Akshay Krishnamurthy · John Langford -
2020 Poster: Reward-Free Exploration for Reinforcement Learning »
Chi Jin · Akshay Krishnamurthy · Max Simchowitz · Tiancheng Yu -
2020 Poster: Adaptive Estimator Selection for Off-Policy Evaluation »
Yi Su · Pavithra Srinath · Akshay Krishnamurthy -
2020 Poster: Private Reinforcement Learning with PAC and Regret Guarantees »
Giuseppe Vietri · Borja de Balle Pigem · Akshay Krishnamurthy · Steven Wu -
2019 : panel discussion with Craig Boutilier (Google Research), Emma Brunskill (Stanford), Chelsea Finn (Google Brain, Stanford, UC Berkeley), Mohammad Ghavamzadeh (Facebook AI), John Langford (Microsoft Research) and David Silver (Deepmind) »
Peter Stone · Craig Boutilier · Emma Brunskill · Chelsea Finn · John Langford · David Silver · Mohammad Ghavamzadeh -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 : invited talk by John Langford (Microsoft Research): How do we make Real World Reinforcement Learning revolution? »
John Langford -
2019 Poster: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Poster: Fair Regression: Quantitative Definitions and Reduction-Based Algorithms »
Alekh Agarwal · Miroslav Dudik · Steven Wu -
2019 Oral: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Oral: Fair Regression: Quantitative Definitions and Reduction-Based Algorithms »
Alekh Agarwal · Miroslav Dudik · Steven Wu -
2019 Poster: Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments »
Kirthevasan Kandasamy · Willie Neiswanger · Reed Zhang · Akshay Krishnamurthy · Jeff Schneider · Barnabás Póczos -
2019 Oral: Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments »
Kirthevasan Kandasamy · Willie Neiswanger · Reed Zhang · Akshay Krishnamurthy · Jeff Schneider · Barnabás Póczos -
2019 Poster: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Poster: Contextual Memory Trees »
Wen Sun · Alina Beygelzimer · Hal Daumé III · John Langford · Paul Mineiro -
2019 Oral: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Oral: Contextual Memory Trees »
Wen Sun · Alina Beygelzimer · Hal Daumé III · John Langford · Paul Mineiro -
2018 Poster: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis -
2018 Poster: Hierarchical Imitation and Reinforcement Learning »
Hoang Le · Nan Jiang · Alekh Agarwal · Miroslav Dudik · Yisong Yue · Hal Daumé III -
2018 Poster: A Reductions Approach to Fair Classification »
Alekh Agarwal · Alina Beygelzimer · Miroslav Dudik · John Langford · Hanna Wallach -
2018 Oral: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis -
2018 Oral: Hierarchical Imitation and Reinforcement Learning »
Hoang Le · Nan Jiang · Alekh Agarwal · Miroslav Dudik · Yisong Yue · Hal Daumé III -
2018 Oral: A Reductions Approach to Fair Classification »
Alekh Agarwal · Alina Beygelzimer · Miroslav Dudik · John Langford · Hanna Wallach -
2018 Poster: Practical Contextual Bandits with Regression Oracles »
Dylan Foster · Alekh Agarwal · Miroslav Dudik · Haipeng Luo · Robert Schapire -
2018 Oral: Practical Contextual Bandits with Regression Oracles »
Dylan Foster · Alekh Agarwal · Miroslav Dudik · Haipeng Luo · Robert Schapire -
2018 Poster: Learning Deep ResNet Blocks Sequentially using Boosting Theory »
Furong Huang · Jordan Ash · John Langford · Robert Schapire -
2018 Oral: Learning Deep ResNet Blocks Sequentially using Boosting Theory »
Furong Huang · Jordan Ash · John Langford · Robert Schapire -
2017 : Corralling a Band of Bandit Algorithms »
Alekh Agarwal -
2017 Poster: Optimal and Adaptive Off-policy Evaluation in Contextual Bandits »
Yu-Xiang Wang · Alekh Agarwal · Miroslav Dudik -
2017 Talk: Optimal and Adaptive Off-policy Evaluation in Contextual Bandits »
Yu-Xiang Wang · Alekh Agarwal · Miroslav Dudik -
2017 Poster: Logarithmic Time One-Against-Some »
Hal Daumé · Nikos Karampatziakis · John Langford · Paul Mineiro -
2017 Poster: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford -
2017 Talk: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford -
2017 Talk: Logarithmic Time One-Against-Some »
Hal Daumé · Nikos Karampatziakis · John Langford · Paul Mineiro -
2017 Tutorial: Real World Interactive Learning »
Alekh Agarwal · John Langford