Timezone: »
Talk
Capacity Releasing Diffusion for Speed and Locality.
Di Wang · Kimon Fountoulakis · Monika Henzinger · Michael Mahoney · Satish Rao
Diffusions and related random walk procedures are of central importance in many areas of machine learning, data analysis, and applied mathematics. Because they spread mass agnostically at each step in an iterative manner, they can sometimes spread mass ``too aggressively,'' thereby failing to find the ``right'' clusters. We introduce a novel Capacity Releasing Diffusion (CRD) Process, which is both faster and stays more local than the classical spectral diffusion process. As an application, we use our CRD Process to develop an improved local algorithm for graph clustering. Our local graph clustering method can find local clusters in a model of clustering where one begins the CRD Process in a cluster whose vertices are connected better internally than externally by an $O(\log^2 n)$ factor, where $n$ is the number of nodes in the cluster. Thus, our CRD Process is the first local graph clustering algorithm that is not subject to the well-known quadratic Cheeger barrier. Our result requires a certain smoothness condition, which we expect to be an artifact of our analysis. Our empirical evaluation demonstrates improved results, in particular for realistic social graphs where there are moderately good---but not very good---clusters.
Author Information
Di Wang (UC Berkeley)
Kimon Fountoulakis (University of California Berkeley and International Computer Science Institute)
Monika Henzinger
Michael Mahoney (UC Berkeley)
Satish Rao (UC Berkeley)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Capacity Releasing Diffusion for Speed and Locality. »
Tue. Aug 8th 08:30 AM -- 12:00 PM Room Gallery #60
More from the Same Authors
-
2023 : Fast Feature Selection with Fairness Constraints »
Francesco Quinzan · Rajiv Khanna · Moshik Hershcovitch · Sarel Cohen · Daniel Waddington · Tobias Friedrich · Michael Mahoney -
2023 Poster: Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes »
Liam Hodgkinson · Chris van der Heide · Fred Roosta · Michael Mahoney -
2023 Poster: Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching »
Ilgee Hong · Sen Na · Michael Mahoney · Mladen Kolar -
2023 Poster: Constant Matters: Fine-grained Error Bound on Differentially Private Continual Observation »
Hendrik Fichtenberger · Monika Henzinger · Jalaj Upadhyay -
2023 Poster: Learning Physical Models that Can Respect Conservation Laws »
Derek Hansen · Danielle Robinson · Shima Alizadeh · Gaurav Gupta · Michael Mahoney -
2023 Poster: A Three-regime Model of Network Pruning »
Yefan Zhou · Yaoqing Yang · Arin Chang · Michael Mahoney -
2022 Poster: AutoIP: A United Framework to Integrate Physics into Gaussian Processes »
Da Long · Zheng Wang · Aditi Krishnapriyan · Robert Kirby · Shandian Zhe · Michael Mahoney -
2022 Poster: GACT: Activation Compressed Training for Generic Network Architectures »
Xiaoxuan Liu · Lianmin Zheng · Dequan Wang · Yukuo Cen · Weize Chen · Xu Han · Jianfei Chen · Zhiyuan Liu · Jie Tang · Joseph Gonzalez · Michael Mahoney · Alvin Cheung -
2022 Spotlight: AutoIP: A United Framework to Integrate Physics into Gaussian Processes »
Da Long · Zheng Wang · Aditi Krishnapriyan · Robert Kirby · Shandian Zhe · Michael Mahoney -
2022 Spotlight: GACT: Activation Compressed Training for Generic Network Architectures »
Xiaoxuan Liu · Lianmin Zheng · Dequan Wang · Yukuo Cen · Weize Chen · Xu Han · Jianfei Chen · Zhiyuan Liu · Jie Tang · Joseph Gonzalez · Michael Mahoney · Alvin Cheung -
2022 Poster: Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers »
Liam Hodgkinson · Umut Simsekli · Rajiv Khanna · Michael Mahoney -
2022 Poster: Fat–Tailed Variational Inference with Anisotropic Tail Adaptive Flows »
Feynman Liang · Michael Mahoney · Liam Hodgkinson -
2022 Poster: Neurotoxin: Durable Backdoors in Federated Learning »
Zhengming Zhang · Ashwinee Panda · Linyue Song · Yaoqing Yang · Michael Mahoney · Prateek Mittal · Kannan Ramchandran · Joseph E Gonzalez -
2022 Spotlight: Neurotoxin: Durable Backdoors in Federated Learning »
Zhengming Zhang · Ashwinee Panda · Linyue Song · Yaoqing Yang · Michael Mahoney · Prateek Mittal · Kannan Ramchandran · Joseph E Gonzalez -
2022 Spotlight: Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers »
Liam Hodgkinson · Umut Simsekli · Rajiv Khanna · Michael Mahoney -
2022 Spotlight: Fat–Tailed Variational Inference with Anisotropic Tail Adaptive Flows »
Feynman Liang · Michael Mahoney · Liam Hodgkinson -
2021 Workshop: Beyond first-order methods in machine learning systems »
Albert S Berahas · Anastasios Kyrillidis · Fred Roosta · Amir Gholaminejad · Michael Mahoney · Rachael Tappenden · Raghu Bollapragada · Rixon Crane · J. Lyle Kim -
2021 Poster: HAWQ-V3: Dyadic Neural Network Quantization »
Zhewei Yao · Zhen Dong · Zhangcheng Zheng · Amir Gholaminejad · Jiali Yu · Eric Tan · Leyuan Wang · Qijing Huang · Yida Wang · Michael Mahoney · EECS Kurt Keutzer -
2021 Spotlight: HAWQ-V3: Dyadic Neural Network Quantization »
Zhewei Yao · Zhen Dong · Zhangcheng Zheng · Amir Gholaminejad · Jiali Yu · Eric Tan · Leyuan Wang · Qijing Huang · Yida Wang · Michael Mahoney · EECS Kurt Keutzer -
2021 Poster: ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training »
Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez -
2021 Oral: ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training »
Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez -
2021 Poster: Multiplicative Noise and Heavy Tails in Stochastic Optimization »
Liam Hodgkinson · Michael Mahoney -
2021 Spotlight: Multiplicative Noise and Heavy Tails in Stochastic Optimization »
Liam Hodgkinson · Michael Mahoney -
2020 : Determinantal Point Processes in Randomized Numerical Linear Algebra »
Michael Mahoney -
2020 Workshop: Beyond first order methods in machine learning systems »
Albert S Berahas · Amir Gholaminejad · Anastasios Kyrillidis · Michael Mahoney · Fred Roosta -
2020 Poster: Forecasting Sequential Data Using Consistent Koopman Autoencoders »
Omri Azencot · N. Benjamin Erichson · Vanessa Lin · Michael Mahoney -
2020 Poster: PowerNorm: Rethinking Batch Normalization in Transformers »
Sheng Shen · Zhewei Yao · Amir Gholaminejad · Michael Mahoney · Kurt Keutzer -
2020 Poster: p-Norm Flow Diffusion for Local Graph Clustering »
Kimon Fountoulakis · Di Wang · Shenghao Yang -
2020 Poster: Error Estimation for Sketched SVD via the Bootstrap »
Miles Lopes · N. Benjamin Erichson · Michael Mahoney -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Why Deep Learning Works: Traditional and Heavy-Tailed Implicit Self-Regularization in Deep Neural Networks »
Michael Mahoney -
2019 Poster: Traditional and Heavy Tailed Self Regularization in Neural Network Models »
Michael Mahoney · Charles H Martin -
2019 Oral: Traditional and Heavy Tailed Self Regularization in Neural Network Models »
Michael Mahoney · Charles H Martin -
2018 Poster: Out-of-sample extension of graph adjacency spectral embedding »
Keith Levin · Fred Roosta · Michael Mahoney · Carey Priebe -
2018 Oral: Out-of-sample extension of graph adjacency spectral embedding »
Keith Levin · Fred Roosta · Michael Mahoney · Carey Priebe -
2018 Poster: Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap »
Miles Lopes · Shusen Wang · Michael Mahoney -
2018 Oral: Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap »
Miles Lopes · Shusen Wang · Michael Mahoney -
2017 Poster: Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging »
Shusen Wang · Alex Gittens · Michael Mahoney -
2017 Talk: Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging »
Shusen Wang · Alex Gittens · Michael Mahoney