Timezone: »

 
Talk
Bayesian inference on random simple graphs with power law degree distributions
Juho Lee · Creighton Heaukulani · Zoubin Ghahramani · Lancelot F. James · Seungjin Choi

Mon Aug 07 05:48 PM -- 06:06 PM (PDT) @ C4.1

We present a model for random simple graphs with power law (i.e., heavy-tailed) degree distributions. To attain this behavior, the edge probabilities in the graph are constructed from Bertoin–Fujita–Roynette–Yor (BFRY) random variables, which have been recently utilized in Bayesian statistics for the construction of power law models in several applications. Our construction readily extends to capture the structure of latent factors, similarly to stochastic block-models, while maintaining its power law degree distribution. The BFRY random variables are well approximated by gamma random variables in a variational Bayesian inference routine, which we apply to several network datasets for which power law degree distributions are a natural assumption. By learning the parameters of the BFRY distribution via probabilistic inference, we are able to automatically select the appropriate power law behavior from the data. In order to further scale our inference procedure, we adopt stochastic gradient ascent routines where the gradients are computed on minibatches (i.e., subsets) of the edges in the graph.

Author Information

Juho Lee (POSTECH)
Creighton Heaukulani (Cambridge University)
Zoubin Ghahramani (University of Cambridge & Uber)

Zoubin Ghahramani is a Professor at the University of Cambridge, and Chief Scientist at Uber. He is also Deputy Director of the Leverhulme Centre for the Future of Intelligence, was a founding Director of the Alan Turing Institute and co-founder of Geometric Intelligence (now Uber AI Labs). His research focuses on probabilistic approaches to machine learning and AI. In 2015 he was elected a Fellow of the Royal Society.

Lancelot F. James (Hong Kong University of Science and Technology)
Seungjin Choi (POSTECH)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors