Timezone: »
We propose a Bayesian nonparametric prior over feature allocations for sequential data, the birth-death feature allocation process (BDFP). The BDFP models the evolution of the feature allocation of a set of N objects across a covariate (e.g.~time) by creating and deleting features. A BDFP is exchangeable, projective, stationary and reversible, and its equilibrium distribution is given by the Indian buffet process (IBP). We show that the Beta process on an extended space is the de Finetti mixing distribution underlying the BDFP. Finally, we present the finite approximation of the BDFP, the Beta Event Process (BEP), that permits simplified inference. The utility of the BDFP as a prior is demonstrated on real world dynamic genomics and social network data.
Author Information
Konstantina Palla (Oxford University)
Konstantina Palla is a Machine Learning Researcher in the Healthcare AI Division at Microsoft Research Cambridge. Her research is focusing on the construction and application of Bayesian probabilistic models for discovering latent structure in data. Recently, she has been particularly interested in the application of probabilistic modelling in the Healthcare domain as a means to understand disease subtypes and patients’ subgroups. In her PhD, she developed nonparametric models for relational data with a focus on time evolving settings.
David Knowles (Stanford)
Zoubin Ghahramani (University of Cambridge & Uber)
Zoubin Ghahramani is a Professor at the University of Cambridge, and Chief Scientist at Uber. He is also Deputy Director of the Leverhulme Centre for the Future of Intelligence, was a founding Director of the Alan Turing Institute and co-founder of Geometric Intelligence (now Uber AI Labs). His research focuses on probabilistic approaches to machine learning and AI. In 2015 he was elected a Fellow of the Royal Society.
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: A Birth-Death Process for Feature Allocation »
Mon. Aug 7th 08:30 AM -- 12:00 PM Room Gallery #144
More from the Same Authors
-
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2023 Poster: Neural Diffusion Processes »
Vincent Dutordoir · Alan Saul · Zoubin Ghahramani · Fergus Simpson -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2020 Poster: Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits »
Robert Peharz · Steven Lang · Antonio Vergari · Karl Stelzner · Alejandro Molina · Martin Trapp · Guy Van den Broeck · Kristian Kersting · Zoubin Ghahramani -
2018 Poster: Variational Bayesian dropout: pitfalls and fixes »
Jiri Hron · Alexander Matthews · Zoubin Ghahramani -
2018 Poster: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Oral: Variational Bayesian dropout: pitfalls and fixes »
Jiri Hron · Alexander Matthews · Zoubin Ghahramani -
2018 Oral: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Poster: Discovering Interpretable Representations for Both Deep Generative and Discriminative Models »
Tameem Adel · Zoubin Ghahramani · Adrian Weller -
2018 Oral: Discovering Interpretable Representations for Both Deep Generative and Discriminative Models »
Tameem Adel · Zoubin Ghahramani · Adrian Weller -
2018 Tutorial: Machine Learning for Personalised Health »
Danielle Belgrave · Konstantina Palla · LAMIAE Azizi -
2017 Poster: Magnetic Hamiltonian Monte Carlo »
Nilesh Tripuraneni · Mark Rowland · Zoubin Ghahramani · Richard E Turner -
2017 Talk: Magnetic Hamiltonian Monte Carlo »
Nilesh Tripuraneni · Mark Rowland · Zoubin Ghahramani · Richard E Turner -
2017 Poster: Lost Relatives of the Gumbel Trick »
Matej Balog · Nilesh Tripuraneni · Zoubin Ghahramani · Adrian Weller -
2017 Poster: Bayesian inference on random simple graphs with power law degree distributions »
Juho Lee · Creighton Heaukulani · Zoubin Ghahramani · Lancelot F. James · Seungjin Choi -
2017 Talk: Lost Relatives of the Gumbel Trick »
Matej Balog · Nilesh Tripuraneni · Zoubin Ghahramani · Adrian Weller -
2017 Talk: Bayesian inference on random simple graphs with power law degree distributions »
Juho Lee · Creighton Heaukulani · Zoubin Ghahramani · Lancelot F. James · Seungjin Choi -
2017 Poster: Automatic Discovery of the Statistical Types of Variables in a Dataset »
Isabel Valera · Zoubin Ghahramani -
2017 Poster: Deep Bayesian Active Learning with Image Data »
Yarin Gal · Riashat Islam · Zoubin Ghahramani -
2017 Talk: Deep Bayesian Active Learning with Image Data »
Yarin Gal · Riashat Islam · Zoubin Ghahramani -
2017 Talk: Automatic Discovery of the Statistical Types of Variables in a Dataset »
Isabel Valera · Zoubin Ghahramani