Timezone: »
Domain adaptation is an important open problem in deep reinforcement learning (RL). In many scenarios of interest data is hard to obtain, so agents may learn a source policy in a setting where data is readily available, with the hope that it generalises well to the target domain. We propose a new multi-stage RL agent, DARLA (DisentAngled Representation Learning Agent), which learns to see before learning to act. DARLA’s vision is based on learning a disentangled representation of the observed environment. Once DARLA can see, it is able to acquire source policies that are robust to many domain shifts - even with no access to the target domain. DARLA significantly outperforms conventional baselines in zero-shot domain adaptation scenarios, an effect that holds across a variety of RL environments (Jaco arm, DeepMind Lab) and base RL algorithms (DQN, A3C and EC).
Author Information
Irina Higgins (DeepMind)

Irina Higgins is a research scientist at DeepMind, where she works in the Froniers team. Her work aims to bring together insights from the fields of neuroscience and physics to advance general artificial intelligence through improved representation learning. Before joining DeepMind, Irina was a British Psychological Society Undergraduate Award winner for her achievements as an undergraduate student in Experimental Psychology at Westminster University, followed by a DPhil at the Oxford Centre for Computational Neuroscience and Artificial Intelligence, where she focused on understanding the computational principles underlying speech processing in the auditory brain. During her DPhil, Irina also worked on developing poker AI, applying machine learning in the finance sector, and working on speech recognition at Google Research.
Arka Pal (DeepMind)
Andrei Rusu (DeepMind)
Loic Matthey (DeepMind)
Christopher Burgess (DeepMind)
Alexander Pritzel (Deepmind)
Matthew Botvinick (DeepMind)
Charles Blundell (DeepMind)
Alexander Lerchner (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: DARLA: Improving Zero-Shot Transfer in Reinforcement Learning »
Mon Aug 7th 08:30 AM -- 12:00 PM Room Gallery
More from the Same Authors
-
2020 Poster: Agent57: Outperforming the Atari Human Benchmark »
Adrià Puigdomenech Badia · Bilal Piot · Steven Kapturowski · Pablo Sprechmann · Oleksandr Vitvitskyi · Zhaohan Guo · Charles Blundell -
2020 Poster: Stabilizing Transformers for Reinforcement Learning »
Emilio Parisotto · Francis Song · Jack Rae · Razvan Pascanu · Caglar Gulcehre · Siddhant Jayakumar · Max Jaderberg · Raphael Lopez Kaufman · Aidan Clark · Seb Noury · Matthew Botvinick · Nicolas Heess · Raia Hadsell -
2020 Tutorial: Representation Learning Without Labels »
S. M. Ali Eslami · Irina Higgins · Danilo J. Rezende -
2019 Workshop: Workshop on Multi-Task and Lifelong Reinforcement Learning »
Sarath Chandar · Shagun Sodhani · Khimya Khetarpal · Tom Zahavy · Daniel J. Mankowitz · Shie Mannor · Balaraman Ravindran · Doina Precup · Chelsea Finn · Abhishek Gupta · Amy Zhang · Kyunghyun Cho · Andrei Rusu · Facebook Rob Fergus -
2019 Poster: Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Francis Song · Edward Hughes · Neil Burch · Iain Dunning · Shimon Whiteson · Matthew Botvinick · Michael Bowling -
2019 Poster: Multi-Object Representation Learning with Iterative Variational Inference »
Klaus Greff · Raphael Lopez Kaufman · Rishabh Kabra · Nicholas Watters · Christopher Burgess · Daniel Zoran · Loic Matthey · Matthew Botvinick · Alexander Lerchner -
2019 Oral: Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Francis Song · Edward Hughes · Neil Burch · Iain Dunning · Shimon Whiteson · Matthew Botvinick · Michael Bowling -
2019 Oral: Multi-Object Representation Learning with Iterative Variational Inference »
Klaus Greff · Raphael Lopez Kaufman · Rishabh Kabra · Nicholas Watters · Christopher Burgess · Daniel Zoran · Loic Matthey · Matthew Botvinick · Alexander Lerchner -
2018 Poster: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Poster: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2018 Poster: Been There, Done That: Meta-Learning with Episodic Recall »
Samuel Ritter · Jane Wang · Zeb Kurth-Nelson · Siddhant Jayakumar · Charles Blundell · Razvan Pascanu · Matthew Botvinick -
2018 Oral: Been There, Done That: Meta-Learning with Episodic Recall »
Samuel Ritter · Jane Wang · Zeb Kurth-Nelson · Siddhant Jayakumar · Charles Blundell · Razvan Pascanu · Matthew Botvinick -
2018 Oral: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2018 Oral: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2017 Poster: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · Adrià Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Talk: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · Adrià Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Poster: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Samuel Ritter · David GT Barrett · Adam Santoro · Matthew Botvinick -
2017 Poster: Learning to Learn without Gradient Descent by Gradient Descent »
Yutian Chen · Matthew Hoffman · Sergio Gómez Colmenarejo · Misha Denil · Timothy Lillicrap · Matthew Botvinick · Nando de Freitas -
2017 Talk: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Samuel Ritter · David GT Barrett · Adam Santoro · Matthew Botvinick -
2017 Talk: Learning to Learn without Gradient Descent by Gradient Descent »
Yutian Chen · Matthew Hoffman · Sergio Gómez Colmenarejo · Misha Denil · Timothy Lillicrap · Matthew Botvinick · Nando de Freitas