Timezone: »
In this paper, we consider the problem of machine teaching, the inverse problem of machine learning. Different from traditional machine teaching which views the learners as batch algorithms, we study a new paradigm where the learner uses an iterative algorithm and a teacher can feed examples sequentially and intelligently based on the current performance of the learner. We show that the teaching complexity in the iterative case is very different from that in the batch case. Instead of constructing a minimal training set for learners, our iterative machine teaching focuses on achieving fast convergence in the learner model. Depending on the level of information the teacher has from the learner model, we design teaching algorithms which can provably reduce the number of teaching examples and achieve faster convergence than learning without teachers. We also validate our theoretical findings with extensive experiments on different data distribution and real image datasets.
Author Information
Weiyang Liu (Georgia Tech)
Bo Dai (Georgia Tech)
Ahmad Humayun (Georgia Institute of Technology)
Charlene Tay (Indiana University)
Chen Yu (Indiana University)
Linda Smith (Indiana University)
Jim Rehg (Georgia Tech)
Le Song (Georgia Institute of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Iterative Machine Teaching »
Mon Aug 7th 08:30 AM -- 12:00 PM Room Gallery
More from the Same Authors
-
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 Poster: Energy-Based Processes for Exchangeable Data »
Mengjiao Yang · Bo Dai · Hanjun Dai · Dale Schuurmans -
2020 Poster: Batch Stationary Distribution Estimation »
Junfeng Wen · Bo Dai · Lihong Li · Dale Schuurmans -
2020 Poster: Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search »
Binghong Chen · Chengtao Li · Hanjun Dai · Le Song -
2020 Poster: Temporal Logic Point Processes »
Shuang Li · Lu Wang · Ruizhi Zhang · xiaofu Chang · Xuqin Liu · Yao Xie · Yuan Qi · Le Song -
2020 Poster: Learning To Stop While Learning To Predict »
Xinshi Chen · Hanjun Dai · Yu Li · Xin Gao · Le Song -
2020 Poster: Scalable Deep Generative Modeling for Sparse Graphs »
Hanjun Dai · Azade Nazi · Yujia Li · Bo Dai · Dale Schuurmans -
2020 Poster: Angular Visual Hardness »
Beidi Chen · Weiyang Liu · Zhiding Yu · Jan Kautz · Anshumali Shrivastava · Animesh Garg · Anima Anandkumar -
2019 Poster: Particle Flow Bayes' Rule »
Xinshi Chen · Hanjun Dai · Le Song -
2019 Poster: Generative Adversarial User Model for Reinforcement Learning Based Recommendation System »
Xinshi Chen · Shuang Li · Hui Li · Shaohua Jiang · Yuan Qi · Le Song -
2019 Oral: Generative Adversarial User Model for Reinforcement Learning Based Recommendation System »
Xinshi Chen · Shuang Li · Hui Li · Shaohua Jiang · Yuan Qi · Le Song -
2019 Oral: Particle Flow Bayes' Rule »
Xinshi Chen · Hanjun Dai · Le Song -
2018 Poster: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Poster: Towards Black-box Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Xingguo Li · Zhen Liu · James Rehg · Le Song -
2018 Poster: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Oral: Towards Black-box Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Xingguo Li · Zhen Liu · James Rehg · Le Song -
2018 Oral: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Oral: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Poster: Learning to Explain: An Information-Theoretic Perspective on Model Interpretation »
Jianbo Chen · Le Song · Martin Wainwright · Michael Jordan -
2018 Poster: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Poster: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Oral: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Learning to Explain: An Information-Theoretic Perspective on Model Interpretation »
Jianbo Chen · Le Song · Martin Wainwright · Michael Jordan -
2017 Poster: iSurvive: An Interpretable, Event-time Prediction Model for mHealth »
Walter Dempsey · Alexander Moreno · James Rehg · Susan Murphy · Chris Scott · Michael Dennis · David Gustafson -
2017 Poster: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Poster: Variational Policy for Guiding Point Processes »
Yichen Wang · Grady Williams · Evangelos Theodorou · Le Song -
2017 Talk: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Talk: Variational Policy for Guiding Point Processes »
Yichen Wang · Grady Williams · Evangelos Theodorou · Le Song -
2017 Talk: iSurvive: An Interpretable, Event-time Prediction Model for mHealth »
Walter Dempsey · Alexander Moreno · James Rehg · Susan Murphy · Chris Scott · Michael Dennis · David Gustafson -
2017 Poster: Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs »
Rakshit Trivedi · Hanjun Dai · Yichen Wang · Le Song -
2017 Talk: Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs »
Rakshit Trivedi · Hanjun Dai · Yichen Wang · Le Song -
2017 Poster: Fake News Mitigation via Point Process Based Intervention »
Mehrdad Farajtabar · Jiachen Yang · Xiaojing Ye · Huan Xu · Rakshit Trivedi · Elias Khalil · Shuang Li · Le Song · Hongyuan Zha -
2017 Talk: Fake News Mitigation via Point Process Based Intervention »
Mehrdad Farajtabar · Jiachen Yang · Xiaojing Ye · Huan Xu · Rakshit Trivedi · Elias Khalil · Shuang Li · Le Song · Hongyuan Zha