Timezone: »

 
Talk
Zero-Inflated Exponential Family Embeddings
Liping Liu · David Blei

Sun Aug 06 11:24 PM -- 11:42 PM (PDT) @ Parkside 1

Word embeddings are a widely-used tool to analyze language, and exponential family embeddings (Rudolph et al., 2016) generalize the technique to other types of data. One challenge to fitting embedding methods is sparse data, such as a document/term matrix that contains many zeros. To address this issue, practitioners typically downweight or subsample the zeros, thus focusing learning on the non-zero entries. In this paper, we develop zero-inflated embeddings, a new embedding method that is designed to learn from sparse observations. In a zero-inflated embedding (ZIE), a zero in the data can come from an interaction to other data (i.e., an embedding) or from a separate process by which many observations are equal to zero (i.e. a probability mass at zero). Fitting a ZIE naturally downweights the zeros and dampens their influence on the model. Across many types of data---language, movie ratings, shopping histories, and bird watching logs---we found that zero-inflated embeddings provide improved predictive performance over standard approaches and find better vector representation of items.

Author Information

Liping Liu (Columbia University)
David Blei (Columbia University)

David Blei is a Professor of Statistics and Computer Science at Columbia University, and a member of the Columbia Data Science Institute. His research is in statistical machine learning, involving probabilistic topic models, Bayesian nonparametric methods, and approximate posterior inference algorithms for massive data. He works on a variety of applications, including text, images, music, social networks, user behavior, and scientific data. David has received several awards for his research, including a Sloan Fellowship (2010), Office of Naval Research Young Investigator Award (2011), Presidential Early Career Award for Scientists and Engineers (2011), Blavatnik Faculty Award (2013), and ACM-Infosys Foundation Award (2013). He is a fellow of the ACM.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors