Timezone: »
We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.
Author Information
Chelsea Finn (UC Berkeley)

Chelsea Finn is a research scientist at Google Brain and a post-doctoral scholar at UC Berkeley. In September 2019, she will be joining Stanford's computer science department as an assistant professor. Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. To this end, Finn has developed deep learning algorithms for concurrently learning visual perception and control in robotic manipulation skills, inverse reinforcement methods for scalable acquisition of nonlinear reward functions, and meta-learning algorithms that can enable fast, few-shot adaptation in both visual perception and deep reinforcement learning. Finn received her Bachelors degree in EECS at MIT, and her PhD in CS at UC Berkeley. Her research has been recognized through an NSF graduate fellowship, a Facebook fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg.
Pieter Abbeel (OpenAI / UC Berkeley)
Sergey Levine (Berkeley)

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as computer vision and graphics. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more.
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Mon Aug 7th 08:30 AM -- 12:00 PM Room Gallery
More from the Same Authors
-
2020 Poster: Decentralized Reinforcement Learning: Global Decision-Making via Local Economic Transactions »
Michael Chang · Sid Kaushik · S. Matthew Weinberg · Thomas Griffiths · Sergey Levine -
2020 Poster: CURL: Contrastive Unsupervised Representations for Reinforcement Learning »
Michael Laskin · Aravind Srinivas · Pieter Abbeel -
2020 Poster: Learning Human Objectives by Evaluating Hypothetical Behavior »
Siddharth Reddy · Anca Dragan · Sergey Levine · Shane Legg · Jan Leike -
2020 Poster: Skew-Fit: State-Covering Self-Supervised Reinforcement Learning »
Vitchyr Pong · Murtaza Dalal · Steven Lin · Ashvin Nair · Shikhar Bahl · Sergey Levine -
2020 Poster: Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts? »
Angelos Filos · Panagiotis Tigas · Rowan McAllister · Nicholas Rhinehart · Sergey Levine · Yarin Gal -
2020 Poster: Planning to Explore via Self-Supervised World Models »
Ramanan Sekar · Oleh Rybkin · Kostas Daniilidis · Pieter Abbeel · Danijar Hafner · Deepak Pathak -
2020 Poster: Cautious Adaptation For Reinforcement Learning in Safety-Critical Settings »
Jesse Zhang · Brian Cheung · Chelsea Finn · Sergey Levine · Dinesh Jayaraman -
2020 Poster: Responsive Safety in Reinforcement Learning by PID Lagrangian Methods »
Adam Stooke · Joshua Achiam · Pieter Abbeel -
2020 Poster: Variable Skipping for Autoregressive Range Density Estimation »
Eric Liang · Zongheng Yang · Ion Stoica · Pieter Abbeel · Yan Duan · Peter Chen -
2019 Workshop: ICML Workshop on Imitation, Intent, and Interaction (I3) »
Nicholas Rhinehart · Sergey Levine · Chelsea Finn · He He · Ilya Kostrikov · Justin Fu · Siddharth Reddy -
2019 Workshop: Workshop on Self-Supervised Learning »
Aaron van den Oord · Yusuf Aytar · Carl Doersch · Carl Vondrick · Alec Radford · Pierre Sermanet · Amir Zamir · Pieter Abbeel -
2019 Workshop: Workshop on Multi-Task and Lifelong Reinforcement Learning »
Sarath Chandar · Shagun Sodhani · Khimya Khetarpal · Tom Zahavy · Daniel J. Mankowitz · Shie Mannor · Balaraman Ravindran · Doina Precup · Chelsea Finn · Abhishek Gupta · Amy Zhang · Kyunghyun Cho · Andrei Rusu · Facebook Rob Fergus -
2019 Workshop: Generative Modeling and Model-Based Reasoning for Robotics and AI »
Aravind Rajeswaran · Emanuel Todorov · Igor Mordatch · William Agnew · Amy Zhang · Joelle Pineau · Michael Chang · Dumitru Erhan · Sergey Levine · Kimberly Stachenfeld · Marvin Zhang -
2019 Poster: Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables »
Friso Kingma · Pieter Abbeel · Jonathan Ho -
2019 Poster: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables »
Friso Kingma · Pieter Abbeel · Jonathan Ho -
2019 Poster: Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables »
Kate Rakelly · Aurick Zhou · Chelsea Finn · Sergey Levine · Deirdre Quillen -
2019 Poster: Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design »
Jonathan Ho · Peter Chen · Aravind Srinivas · Rocky Duan · Pieter Abbeel -
2019 Poster: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2019 Oral: Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design »
Jonathan Ho · Peter Chen · Aravind Srinivas · Rocky Duan · Pieter Abbeel -
2019 Oral: Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables »
Kate Rakelly · Aurick Zhou · Chelsea Finn · Sergey Levine · Deirdre Quillen -
2019 Oral: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2019 Poster: Learning a Prior over Intent via Meta-Inverse Reinforcement Learning »
Kelvin Xu · Ellis Ratner · Anca Dragan · Sergey Levine · Chelsea Finn -
2019 Poster: EMI: Exploration with Mutual Information »
Hyoungseok Kim · Jaekyeom Kim · Yeonwoo Jeong · Sergey Levine · Hyun Oh Song -
2019 Poster: Online Meta-Learning »
Chelsea Finn · Aravind Rajeswaran · Sham Kakade · Sergey Levine -
2019 Poster: Diagnosing Bottlenecks in Deep Q-learning Algorithms »
Justin Fu · Aviral Kumar · Matthew Soh · Sergey Levine -
2019 Oral: Learning a Prior over Intent via Meta-Inverse Reinforcement Learning »
Kelvin Xu · Ellis Ratner · Anca Dragan · Sergey Levine · Chelsea Finn -
2019 Oral: EMI: Exploration with Mutual Information »
Hyoungseok Kim · Jaekyeom Kim · Yeonwoo Jeong · Sergey Levine · Hyun Oh Song -
2019 Oral: Diagnosing Bottlenecks in Deep Q-learning Algorithms »
Justin Fu · Aviral Kumar · Matthew Soh · Sergey Levine -
2019 Oral: Online Meta-Learning »
Chelsea Finn · Aravind Rajeswaran · Sham Kakade · Sergey Levine -
2019 Tutorial: Meta-Learning: from Few-Shot Learning to Rapid Reinforcement Learning »
Chelsea Finn · Sergey Levine -
2018 Poster: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor »
Tuomas Haarnoja · Aurick Zhou · Pieter Abbeel · Sergey Levine -
2018 Poster: PixelSNAIL: An Improved Autoregressive Generative Model »
Xi Chen · Nikhil Mishra · Mostafa Rohaninejad · Pieter Abbeel -
2018 Poster: Regret Minimization for Partially Observable Deep Reinforcement Learning »
Peter Jin · EECS Kurt Keutzer · Sergey Levine -
2018 Poster: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Oral: Regret Minimization for Partially Observable Deep Reinforcement Learning »
Peter Jin · EECS Kurt Keutzer · Sergey Levine -
2018 Oral: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor »
Tuomas Haarnoja · Aurick Zhou · Pieter Abbeel · Sergey Levine -
2018 Oral: PixelSNAIL: An Improved Autoregressive Generative Model »
Xi Chen · Nikhil Mishra · Mostafa Rohaninejad · Pieter Abbeel -
2018 Oral: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Poster: Automatic Goal Generation for Reinforcement Learning Agents »
Carlos Florensa · David Held · Xinyang Geng · Pieter Abbeel -
2018 Poster: Latent Space Policies for Hierarchical Reinforcement Learning »
Tuomas Haarnoja · Kristian Hartikainen · Pieter Abbeel · Sergey Levine -
2018 Poster: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Poster: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Automatic Goal Generation for Reinforcement Learning Agents »
Carlos Florensa · David Held · Xinyang Geng · Pieter Abbeel -
2018 Oral: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Oral: Latent Space Policies for Hierarchical Reinforcement Learning »
Tuomas Haarnoja · Kristian Hartikainen · Pieter Abbeel · Sergey Levine -
2017 Poster: Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning »
Yevgen Chebotar · Karol Hausman · Marvin Zhang · Gaurav Sukhatme · Stefan Schaal · Sergey Levine -
2017 Talk: Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning »
Yevgen Chebotar · Karol Hausman · Marvin Zhang · Gaurav Sukhatme · Stefan Schaal · Sergey Levine -
2017 Poster: Modular Multitask Reinforcement Learning with Policy Sketches »
Jacob Andreas · Dan Klein · Sergey Levine -
2017 Poster: Prediction and Control with Temporal Segment Models »
Nikhil Mishra · Pieter Abbeel · Igor Mordatch -
2017 Poster: Reinforcement Learning with Deep Energy-Based Policies »
Tuomas Haarnoja · Haoran Tang · Pieter Abbeel · Sergey Levine -
2017 Poster: Constrained Policy Optimization »
Joshua Achiam · David Held · Aviv Tamar · Pieter Abbeel -
2017 Talk: Modular Multitask Reinforcement Learning with Policy Sketches »
Jacob Andreas · Dan Klein · Sergey Levine -
2017 Talk: Prediction and Control with Temporal Segment Models »
Nikhil Mishra · Pieter Abbeel · Igor Mordatch -
2017 Talk: Reinforcement Learning with Deep Energy-Based Policies »
Tuomas Haarnoja · Haoran Tang · Pieter Abbeel · Sergey Levine -
2017 Talk: Constrained Policy Optimization »
Joshua Achiam · David Held · Aviv Tamar · Pieter Abbeel -
2017 Tutorial: Deep Reinforcement Learning, Decision Making, and Control »
Sergey Levine · Chelsea Finn